
Chris Edwards
Zero Downtime Data Migrations

Continuous
Delivery

Continuous
Deployment

Zero
Downtime
Deployment

!= !=

Continuous Delivery

Continuous Delivery is the ability to get changes of all
types—including new features, configuration changes,
bug fixes and experiments—into production, or into the
hands of users, safely and quickly in a sustainable way.

https://continuousdelivery.com/

Continuous Deployment

Involves the actual release of changes into a production
environment using no manual steps

Zero Downtime Deployment

The release of changes to a production environment
without disrupting users (actual humans or external
systems)

15 Stations in
and around

Calgary

Stations hours:
6am-11pm MT

11pm Release

~ Once every two
weeks

Scheduled Maintenance

✓ Kill server

✓ Migrate data

v2

✓ Spin up new server

12,000 stations
across Canada

Zero Downtime Deployments

✓ Database migrated

✓ New server spun up

v2
✓ Traffic routed to new server

✓ Approx 5 minutes passes

✓ Old server receiving no traffic

✓ Old server killed

Two Minutes

Demo Time!
https://demo.chrisedwardsyyc.com

const counterSchema = new Schema({
 counter: {
 currentValue: Number
 }
})

class Counter {
 id;
 currentValue;

 constructor(id, count) {
 this.id = id;
 this.currentValue = count ?? 0;
 }

 static fromDoc(doc) {
 return new Counter(doc._id, doc.counter?.currentValue)
 }

 toDoc() {
 return { counter: { currentValue: this.currentValue } };
 }
}

async up(db, client) {
 await db.collection('counters').update(
 {}, {
 $rename: {'counter.currentValue': 'counter.newValue'}})
 })

Zero Downtime Deployments

✓ Database migrated

✓ New server spun up

v2
✓ Traffic routed to new server

✓ Approx 5 minutes passes

✓ Old server receiving no traffic

✓ Old server killed

Multi-Step Migrations

v1 v2 v3 v4

Load Balancer

Rename - Step 1/3

● Variable saved to new name AND
old name

● Server can read from new name
AND old name

v2v1

const counterSchema = new Schema({
 counter: {
 newValue: Number,
 newerValue: Number
 }
});

static fromDoc(doc) {
 const counterValue = doc.counter?.newValue ?? doc.counter?.newerValue;
 return new Counter(doc._id, counterValue)
}

toDoc() {
 return {
 counter: {
 newValue: this.currentValue,
 newerValue: this.currentValue
 }
 };
}

Rename - Step 2/3

● Database migration to rename
variable

● Server no longer saves to old
name

● Server no longer reads from the
new name v3v2

const counterSchema = new Schema({
 counter: {
 newValue: Number
 }
});

static fromDoc(doc) {
 const counterValue = doc.counter?.newerValue;
 return new Counter(doc._id, counterValue)
}

toDoc() {
 return {
 counter: {
 newerValue: this.currentValue
 }
 };
}

async up(db, client) {
 await db.collection('counters').update(
 {}, {
 $rename: {'counter.newValue': 'counter.newerValue' }})
 })

Rename - Step 3/3

● Migration to remove old schema

v3 v4

async up(db, client) {
 await db.collection('counters').update(
 {},
 [{ $unset: 'counter.newValue' }])
 }
}

Migration Assessment

● Can data loss occur?
● Is there customer impact of data loss?
● Can it be easily repaired?

Is Zero-Downtime right for you?

● How many users do you have? Zero? 100? 10,000?
● How often do your users use your system?
● How critical is this system to their business (or yours?)
● What impact is the current deployment system

having on your development team?

How we work

Test-Driven Development

● Red-green refactor
● Nearly 100% test server-side coverage

Unit

Test Pyramid Diamond

Integration

UI UI

Unit

Integration

Test Pyramid - Mike Cohn, in his 2009 book Succeeding with Agile

Data Pipeline Tests

Prepoulated
DB

Migrations Report
Queries

Trunk-Based Development

● No pull requests or feature branches
● Developers push to trunk 10+ times per day
● Trunk always in releasable state

Toggles/Cohorts/Dogfooding

● Release toggles to hide new functionality from
customers

● Cohorts to release functionality incrementally
● Alpha cohort for extremely new or untested features

“Continuous”
Deployment

You build it,
You run it

Questions?

