
 

	
Courtney	Shar,	RxSavings	Solutions;	email:	courtneymshar@gmail.com		
Copyright	2020	is	held	by	the	author(s). 

Zero	to	Metrics-Driven	Hero	
COURTNEY	SHAR,	RxSavings	Solutions	

I	will	 take	 you	 on	 a	 journey	with	 a	 new	 team	 that	went	 from	 being	 unable	 to	 even	 plan	 a	 sprint	 in	 sixty	minutes	 to	 a	metrics-driven	
planning	machine	that	estimates	with	confidence	and	delivers	on	promises.	I	hope	that	by	sharing	our	journey	from	Zero	to	Hero,	you	gain	
ideas	and	inspiration	you	can	take	with	you	and	make	your	own	heroic	team.	

1. INTRODUCTION	

I	will	begin	by	going	over	the	first	years	of	a	particularly	unique	team.	No	one	was	experienced	on	this	team	
when	 it	was	created,	and	 they	were	expected	 to	quickly	become	experts	 in	several	areas.	 I	will	 talk	 through	
what	the	team	was	like	before	I	was	their	PM	and	the	struggles	they	went	through.	This	will	walk	through	how	
the	 team	 went	 from	 being	 unable	 to	 keep	 their	 commitments	 for	 their	 quarterly	 Big	 Room	 Planning,	 also	
known	 as	 Program	 Increment	 planning	 [1],	 and	 their	 transformation.	 I	will	 demonstrate	 how,	 as	 their	 next	
project	manager	with	7	years	of	experience	and	an	agile	champion,	took	them	through	the	 four	stages	 in	the	
Agile	process.	This	went	from	organizing	the	flow	of	work	to	sophisticated	forecasting	models.	In	addition,	you	
will	see	how	the	team	learned	to	bring	metrics	into	each	part	of	their	own	development	lifecycle,	including	how	
to	measure	success	with	their	consumers.	

2. BACKGROUND	

Like	any	good	story	of	a	hero’s	journey,	we	must	start	at	the	very	beginning.	The	team	lead,	Shawn,	had	joined	
the	company	in	2012	as	a	Software	Engineer	and	ended	up	on	a	backend	services	team	where	he	spent	the	first	
five	years	of	his	career.	He	enjoyed	working	on	this	team,	and	after	five	years	you	can	imagine	that	he	was	an	
expert	in	how	the	team	operated,	including	how	they	practiced	Agile	methodologies.	He	was	then	approached	
to	become	a	team	lead	for	a	new	team.	He	started	thinking	about	what	he	liked	about	the	team	he	was	on	and	
how	he	could	bring	that	experience	to	the	new	team;	however,	he	also	started	thinking	about	the	things	on	his	
team	that	he	wished	were	different.	He	was	excited	and	motivated	to	make	this	team	great.	The	next	day,	he	
decided	to	take	the	opportunity	and	in	July	of	2017	the	team	was	born.	

On	day	one,	the	so-called	team	was	Shawn	in	a	brand-new	role	and	his	manager	Amber.	It	wasn’t	long	after,	
however,	that	they	were	given	two	software	engineers	and	a	project	manager,	all	three	of	whom	were	brand-
new.	They	began	work	on	a	couple	of	small	projects,	creating	some	JIRA	tickets	along	the	way.	They	decided	on	
two-week	sprints	and	scheduled	their	planning/retrospective	meetings.	Shawn	didn’t	give	too	much	thought	to	
any	 of	 these	 decisions;	 instead,	 he	 carried	 forward	 what	 had	 been	 done	 on	 his	 previous	 team.	 Everything	
seemed	 like	 it	was	going	well	until	 they	reached	the	 first	planning	meeting.	There	he	 learned	that	as	no	two	
projects	or	 teams	are	the	same,	what	will	work	for	his	previous	team	wouldn’t	necessarily	work	for	his	new	
team.	

There	are	two	major	differences	between	Shawn’s	team	and	his	previous	team	I’d	like	to	discuss.	The	first	
difference	was	the	code.	All	of	the	other	teams	in	our	organization	were	what	I	would	consider	typical	teams—
they	 own	 code	 and	 concepts	 where	 they	 have	 become	 technical	 experts	 in	 their	 area.	 They	 have	 a	 high	
familiarity	with	the	projects	they	work	on,	and	don’t	have	to	branch	out	into	different	concepts	too	often.	This	
team,	on	the	other	hand,	was	created	to	be	more	of	a	floating	team.	Instead	of	being	a	floating	individual,	the	
team	was	used	as	a	collective	loan.	Instead	of	owning	their	own	concepts,	they	would	primarily	be	working	on	
loan	to	other	teams	and	making	changes	in	that	team’s	code—code	they	didn’t	own	and	were	not	very	familiar	
with.	This	meant	that	the	team	needed	to	operate	in	a	very	collaborative	manner,	and	venture	into	unfamiliar	
concepts	on	a	regular	basis.	This	situation	would	lead	us	to	implement	some	unique	processes	that	would	help	
us	in	this	situation.		



Zero	to	Metrics-Driven	Hero	Page	-	2	
 

The	 second	major	 unique	 challenge	 for	 the	 team	was	 how	 they	 fell	 in	 the	 company’s	 organization.	 They	
belonged	 in	one	organization,	but	were	completing	projects	 for	another.	Their	organizational	alignment	was	
where	the	asks	went	to;	however,	the	funding	for	the	team	came	from	outside.	This	is	because	the	work	aligned	
well	with	the	organization	they	were	 in,	but	the	requests	 for	work	came	from	the	funded	one.	The	challenge	
was	that	they	were	responsible	to	both	to	follow	their	different	processes.	The	development	processes	needed	
to	follow	their	own	policies,	but	needed	to	align	projects	and	planning	with	the	other	part	of	the	company.	The	
latter	was	very	difficult	for	the	team	to	get	used	to.	

3. THE	FIRST	PLANNING	MEETING	

When	they	walked	into	the	planning	meeting,	they	didn’t	do	it	as	a	team.	Shawn	walked	into	the	meeting	with	
the	expectation	 that	 things	would	go	 the	 same	way	 they	did	 in	planning	meetings	on	his	previous	 team.	His	
manager,	Amber,	also	walked	in	assuming	it	would	be	the	same	as	on	her	other	team.	The	two	new	engineers	
came	 in	 not	 knowing	what	 to	 expect,	 and	 their	 new	project	manager	 came	 in	 prepared	 to	 lead	 the	meeting	
based	on	what	he	 thought	 from	his	own	observations	on	other	 teams.	As	a	 result	of	 the	 lack	of	preparation,	
things	 started	 falling	apart	almost	 immediately.	When	 they	went	 to	 look	at	 the	 stories,	 they	had	 to	pause	 to	
discuss	whether	or	not	to	do	story	pointing.	Once	they	had	decided	to	do	story	pointing,	they	had	to	figure	out	
how.	Would	 Shawn	 or	 Amber	 participate?	What	 does	 a	 ‘3’	mean?	 They	 didn’t	 know	 how	 to	move	 forward.	
Eventually,	they	decided	to	try	pointing,	which	wasn’t	successful.	Upon	further	investigation,	the	team’s	stories	
were	 poorly	 made.	 They	 were	 vague	 and	 broad,	 such	 as	 a	 story	 that	 simply	 said	 “Code”.	 Then,	 instead	 of	
pointing	 a	 story,	 they	were	 now	 spending	 time	 figuring	 out	what	 the	 scope	 of	 the	 story	was,	what	was	 our	
“acceptance	 criteria”,	 and	 how	 to	 story	 point	 when	 it	 was	 certain	 to	 take	 many	 iterations.	 They	 ended	 up	
abandoning	story	pointing,	and	because	the	stories	were	so	vague	and	broad,	any	attempt	to	slot	 the	stories	
failed	too.		

As	 you	may	guess,	 there	were	additional	 issues.	The	project	manager	was	new,	 and	was	on	a	new	 team,	
resulting	in	a	tug-of-war	between	three	different	needs—the	need	for	Shawn	and	Amber	to	help	coach	him	as	
he	 grows	 into	 his	 role,	 the	 need	 for	 him	 to	 be	 a	 recognized	 leader	 on	 the	 team	 by	 leading	 the	 agile	
ceremonies—including	the	planning	meeting,	and	the	need	for	the	team	to	sort	out	all	of	the	issues	they	were	
running	into.	The	result	was	that	they	did	a	mixture	of	trying	to	satisfy	all	three;	but	in	the	end	they	didn’t	get	
anywhere.	For	example,	the	team	needed	to	have	their	own	ground	rules	for	retrospectives.	Such	as	focusing	
on	what	 you	 can	 change	 and	 not	 on	 the	 negative.	While	 “rant”	 sessions	 can	 be	 helpful	 for	 the	 team	 to	 feel	
listened	 to,	 the	 need	 to	 have	 actionable	 items	 outweighs	 this.	 In	 addition,	 Shawn	 believed	 that	 the	 project	
retrospective	questions	that	he	used	with	his	previous	team	would	be	successful	as	they	were	copied	from	an	
already	successful	 team.	As	 they	began	 to	work	 through	 the	questions,	 the	 team	didn’t	understand	 them	all.	
They	hadn’t	written	them,	and	were	stuck	in	translation.	Also,	not	all	of	the	questions	applied	to	the	team	since	
they	were	going	through	the	motions.	So,	after	all	that,	they	decided	to	end	the	meeting,	think	through	things,	
and	regroup	at	a	later	time.	

3.1 The	Aftermath	
In	 the	 aftermath	 of	 the	 initial	 planning	meeting,	 Shawn	 first	 began	 giving	 the	 processes	 the	 attention	 they	
deserved.	It	was	time	to	stop	blindly	carrying	forward	what	the	previous	teams	had	done	and	to	start	thinking	
of	what	was	needed.	There	was	no	perfect	template.	Shawn	was	by	no	means	an	expert	at	Agile	development	
methodologies,	 but	did	 recognize	 some	 things	 that	needed	 changing,	 such	 as	 story	breakdowns.	 It	was	 then	
that	he	 took	 the	 team’s	very	 first	 step	 towards	greatness.	He	 took	 the	current	projects	and	re-organized	 the	
tasks	into	much	smaller	bite-sized	pieces	that	could	be	completed	in	a	single	two-week	iteration,	and	showed	
these	smaller	tasks	to	the	team	as	an	example	of	how	to	organize	things	moving	forward.	It	wasn’t	a	change	he	
was	able	to	make	easily,	as	he	had	spent	years	working	with	tasks	that	were	vague	and	broad,	and	had	grown	
to	accept	that	as	an	appropriate	way	to	track	projects.	Then,	the	positive	results	began	to	show.		

In	the	second	planning	meeting,	 the	team	came	in	knowing	that	they	were	going	to	point	the	stories,	and	
that	they	were	now	broken	down	into	more	manageable	tasks,	so	they	began	the	first	story	pointing	session.	It	
was	 rough,	 but	 this	 time	 around	 it	was	 possible.	 They	were	 able	 to	 understand	 each	 story’s	 scope	 and	 give	
something	more	than	a	wild	guess	as	 to	 its	complexity.	Now,	 they	had	the	 typical	difficulties	 for	a	new	team	
when	 story	pointing—coming	 to	 a	 common	understanding	of	what	 a	 particular	number	of	 points	means,	 as	
well	as,	not	being	afraid	to	disagree	with	other	team	members	and	voice	a	unique	opinion.	These	difficulties	
would	prove	to	naturally	smooth	out	over	time	as	they	all	continued	to	story	point	together	as	trust	within	the	
team	grew.		



Zero	to	Metrics-Driven	Hero	Page	-	3	
 

Another	step	the	team	took	in	the	right	direction	was	to	take	the	Agile	Bootcamp	course	as	a	team,	where	I,	
coincidentally,	 was	 the	 teacher.	 This	 helped	 them	 to	 level	 set	 on	 the	 Agile	 processes,	 giving	 all	 of	 the	 new	
members	 an	 idea	 of	 how	 things	 should	 ideally	 be	 done.	 After	 this,	 the	whole	 team	was	 able	 to	 understand	
where	they	were	in	our	processes	and	where	we	wanted	to	be,	and	could	help	contribute	to	minimizing	that	
gap.	The	team	had	started	making	some	progress	towards	functioning	well	and	in	an	Agile	way.	Things	were	
still	 rough	 as	 they	were	 learning;	 however,	 they	were	 story	 pointing,	 breaking	 out	 tasks,	 and	 retrospecting.	
They	started	 to	get	 into	something	resembling	a	successful	 rhythm	for	 their	 first	 two	months	 together,	until	
their	first	Big	Room	Planning	session.	

Their	first	Big	Room	Planning	session	was	stressful	and	confusing.	As	a	new	team	joining	an	organization	
that	had	been	planning	for	a	while,	they	were	missing	context	that	was	key	to	getting	value	from	the	session.	
Instead	 of	 understanding	 why	 they	 were	 going	 through	 this	 process,	 they	 found	 themselves	 scrambling	 to	
check	all	of	the	boxes,	with	no	time	to	understand	why.	The	result	was	two	days	in	a	meeting	room	struggling	
to	 pull	 together	 some	 sort	 of	 educated	 guess	 as	 to	 what	 could	 be	 accomplished	 in	 the	 next	 quarter	 to	 be	
communicated	out	to	the	organization	for	commitments.	They	survived	their	first	Big	Room	Planning	session	
with	a	plan	for	the	next	quarter	of	work	that	they	were	a	little	confident	in,	but	it	was	clear	they	were	a	long	
way	from	where	they	needed—and	wanted—to	be.	What	they	would	eventually	realize	was,	all	they	had	been	
doing	 so	 far	was	 trying	 to	 fit	 themselves	 into	 their	 processes,	without	 understanding	why	 they	were	 doing	
these	things	and	if	they	even	made	sense	for	the	team.	Unfortunately,	no	one	on	the	team	had	the	knowledge	
and	 experience	 to	 really	 understand	 this	 yet,	 or	where	 they	 needed	 to	 go	 from	 here.	 They	were	 stuck,	 and	
needed	help.	They	needed	an	Agile	Hero!		

4. ZERO	TO	HERO	AND	THE	IMPLEMENTATION	EVOLUTION	

I	was	pulled	aside	by	my	manager	and	asked	to	come	in	and	look	into	the	team.	We	had	realized	that	a	new	PM	
with	a	brand	new	team	wasn’t	the	best	idea.	At	the	time,	I	already	had	five	agile	teams	so	I	had	thought	it	would	
be	a	quick	fix	as	other	teams	had	been	previously.	I	did	a	one-week	observation	of	the	team	and	immediately	
came	up	with	quick	fixes.	However,	I	noticed	that	with	a	team	that	constantly	had	a	changing	scope,	we	needed	
to	start	pulling	numbers.	I	looked	into	both	ActionableAgile	[2]	and	KanbanSim	[3]	with	the	intention	of	getting	
the	best	of	both.	While	doing	so	I	took	them	through	4	different	phases.	

In	phase	1,	the	team	focused	on	establishing	Work	In	Progress	(WIP)	limits,	ensuring	the	board	visualizes	
the	workflow	by	 removing	 the	 blocked	 status,	 and	 ensured	 that	 each	 column	had	 a	 clear	 definition	 of	 done	
before	moving	to	the	next	status.	This	helps	with	context	switching	by	limiting	WIP	and	ensuring	quality	and	
prioritizations	 are	 maintained.	 For	 this	 team,	 we	 removed	 the	 blocked	 status	 and	 instead	 added	 a	 flag	 to	
blocked	items	as	they	could	become	blocked	anywhere	in	the	workflow.	We	also	made	sure	that	we	had	clear	
done	criteria;	such	as	you	have	to	have	testing	in	your	code	before	you	put	it	out	for	review.	The	team	has	the	
column	on	their	board	turn	red	when	we	exceed	the	WIP	 limits	put	 in	place.	When	this	happens,	we	discuss	
with	the	team	during	standup	to	evaluate	what	happened.	Our	team’s	limits	are	based	on	1	piece	of	work	per	
engineer	 and	 we	 used	 them	 on	 “In	 Progress”	 and	 when	 the	 code	 was	 “In	 Review”	 for	 work	 that	 was	 peer	
reviewed	by	the	team.	Our	WIP	limits	on	these	two	columns	were	1.5	x	the	#	of	engineers	on	the	team.	This	
was	determined	by	the	idea	that	no	engineer	should	be	focusing	on	more	than	two	stories.	If	they	wanted	to	do	
more,	they	needed	to	work	as	a	team	to	keep	the	stories	moving	through	the	board	to	completion	in	order	to	
keep	the	board	from	having	any	“red”.	

In	phase	2,	we	began	measuring	and	using	metrics	in	earnest.	Metrics	increase	transparency	and	help	the	
team	to	think	of	ways	to	improve.	Since	the	team	was	more	open	to	this	when	we	were	at	risk	for	deadlines,	we	
could	focus	on	ideas	for	improvement.	Metrics	generated	a	safe	space	for	the	team	to	experiment,	as	feedback	
was	seen	as	a	gift.	Specifically,	we	needed	to	focus	on	measuring	and	understanding	the	team’s	cycle	time	and	
throughput.	 Measuring	 the	 data	 wasn’t	 enough;	 we	 needed	 to	 be	 discussing	 what	 we	 measured	 in	 our	
retrospectives.	Outliers	 such	as	 tasks	 that	 took	more	 than	 ten	days	needed	 to	be	discussed,	 and	 if	 our	 cycle	
time	was	getting	higher	we	needed	to	discuss	why	that	was,	and	how	to	improve	it.	We	used	Actionable	Agile	
but	 this	can	be	done	 in	other	 tools,	as	well.	The	cycle	 time	scatterplot	 is	a	graph	representation	of	all	of	our	
stories	and	how	long	it	took	for	them	to	close.	For	our	team,	we	decided	that	any	story	taking	longer	than	ten	
days	needed	to	be	discussed	during	our	retrospective,	so	when	preparing	for	that	meeting	we	check	the	data	
for	 stories	 that	 fall	 in	 this	 category.	Cumulative	 flow	diagrams	were	used	 to	monitor	 the	queue	of	 the	 team.	
This	is	particularly	helpful	when	practicing	Lean,	where	there	is	a	focus	on	keeping	Work	in	Progress	items	and	
cycle	time	at	a	minimum.	For	this	report,	our	team	focused	on	the	average	amount	of	time	all	the	stories	during	
a	specific	time	span	spent	in	each	state.	When	looking	at	the	data,	our	team	focused	the	most	on	our	time	spent	



Zero	to	Metrics-Driven	Hero	Page	-	4	
 

“In	Review”,	as	that	was	a	status	that	we	found	we	had	a	tendency	to	get	stuck	in	for	too	long.	Also,	we	had	the	
most	control	over	this	state	as	the	dependencies	were	always	within	our	team.	With	the	aging	work	in	progress	
graph,	we	can	see	how	the	team	is	doing	throughout	the	project	and	see	if	there	are	any	stories	that	go	over	the	
threshold	goal.	The	team	had	a	goal	to	finish	all	stories	under	ten	days.	With	this	chart,	we	would	review	all	the	
stories	that	are	close	to	the	ten-day	threshold	and	be	sure	to	discuss	them	before	they	become	an	issue.		

In	phase	3,	the	team	focused	on	prediction	models	for	forecasting	and	deriving	estimates	with	Monte	Carlo	
simulation.	 Monte	 Carlo	 simulation	 is	 named	 after	 the	 city	 in	 Monaco,	 where	 the	 primary	 attractions	 are	
casinos	that	have	games	of	chance.	Using	Monte	Carlo	with	your	teams	by	giving	a	probability	of	risk.	It	runs	
thousands	of	 simulations	 as	 to	when	you	would	 finish	 a	 certain	number	of	 stories	by	 confidence	 score	on	a	
specific	date.	Within	your	teams	you	may	decide	that	you’ll	have	a	goal	with	a	75%	chance	that	you’ll	finish	a	
milestone	by	 the	deadline.	To	your	executive,	 you’ll	 communicate	with	85%	chance.	Then	 for	 a	 client,	 you’ll	
work	 off	 of	 a	 95%	 chance	 date	 that	 you’ll	 finish	 on	 time.	 This	 is	 all	 due	 to	 how	 comfortable	 you	 feel	 about	
communicating	 risk	 acceptance	 to	 your	 stakeholders	 (team,	 executive,	 client).	 This	 relies	 on	 dedicated	 and	
stable	teams,	which	requires	little	turnover.	You	will	also	need	to	have	a	history	of	cycle	times	in	order	to	run	
the	simulation.	This	is	often	thousands	of	simulations	requiring	many	data	points.	This	means	that	the	larger	
and	more	accurate	the	data	set,	the	better	your	forecast.	You’ll	also	need	cycle	time	for	each	status	transition	as	
your	board	is	 laid	out	 like	we	discussed	in	phase	1.	Understanding	what	 is	 in	your	backlog	means	that	you’ll	
have	the	project	broken	down	or	the	idea	of	how	many	stories	to	expect.	Also,	that	the	stories	are	broken	down	
to	approximately	similar	sizes.	Having	the	large	cycle	time	history	will	take	care	of	natural	variations	in	size.	
For	 the	 first	Monte	Carlo	 simulation	we	would	 run	a	 “How	Many”	 simulation	 to	 talk	 to	 the	 team	about	how	
many	 stories	we	would	 be	 able	 to	 complete	 until	 the	 next	 retrospective	 to	make	 sure	 everyone	was	 on	 the	
same	page.	We	also	looked	at	a	“When”	version	of	Monte	Carlo	to	see	if	we	were	still	on	track	for	our	end	of	
quarter	or	release	commitments.	This	was	pulled	every	retrospective	so	that	if	the	team	needed	to	stay	late,	we	
discovered	this	sooner	and	could	stay	a	few	hours	late	instead	of	several	days.	

In	phase	4,	we	introduced	a	new	tool	to	the	team.	We	started	looking	at	what	we	can	track	and	making	the	
simulation	more	 intelligent	as	we	 learned	more	about	 the	 team.	What	 the	Monte	Carlo	 tool	before	could	not	
show	me	was	 if	 I	 should	 be	worried	 earlier	 in	 the	 project.	 For	 example,	 during	December	 there	 are	 always	
many	engineers	taking	vacation	or	traveling.	My	previous	simulations	will	only	tell	me	how	we’ve	been	doing	
so	 far	 and	not	 that	 I	 need	 to	 account	 for	 having	 fewer	 engineers	 for	 an	 entire	month,	which	would	put	 our	
commits	at	risk,	before	even	starting	the	project.	KanbanSim	from	Focused	Objective	handles	this.	For	Shawn’s	
team	I	focused	on	scope	creep,	as	there	were	specific	issues	around	what	was	assumed	when	starting	a	project	
increasing	 inspection	 and	 adaptation	 for	 the	 team.	 I	 then	 start	 to	 gather	 numbers	 around	 how	much	 scope	
creep	 we	 take	 in	 on	 average	 and	 use	 it	 for	 running	 my	 simulation,	 which	 ActionableAgile’s	 Monte	 Carlo	
simulation	did	not	run	through.	I’m	also	able	to	calculate	any	vacations	or	holidays	that	come	up	and	take	those	
out	of	the	simulation.	By	using	these	tools,	I	was	able	to	find	targeted	areas	for	improvement.	

4.1 Zero	to	hero	and	the	retrospective	
In	addition	to	the	normal	bi-weekly	retrospective,	I	worked	with	the	team	on	two	others.	We	first	focused	on	a	
project	retrospective	where	I	would	ask	the	team	questions	and	they	would	rate	themselves	on	a	scale	of	1-10,	
which	then	ended	with	a	grade.	As	the	team	was	constantly	working	with	outside	organizations,	we	came	up	
with	 polling	 the	 teams	 we	 worked	 with	 every	 quarter.	 By	 doing	 this	 we	 were	 able	 to	 recognize	 ways	 to	
improve	things	for	future	projects	and	fix	any	issues	that	we	had	for	long-standing	projects,	such	as	those	that	
we	knew	we	would	be	working	on	for	more	than	a	quarter.	Here	were	the	themes	that	we	came	up	with	for	
projects:		

1. Project	Page:	Did	we	update	the	project	page	in	a	timely	fashion?	
2. Pro-active	Data	Analysis:	 Did	we	 use	 real-life	 numbers	 (metrics)	 to	 drive	 project	 scope	 and	 feature	

decisions?	
3. Collaborative	Engagement	with	Other	Team:	Did	we	design,	develop	and	test	collaboratively?	
4. Frequent	Deployment	and	Early	Integration:	Did	we	deploy	frequently	and	integrate	early?	
5. Planning	and	Execution:	Did	we	plan	and	execute	the	project	well	and	without	last	minute	all-hands-

on-deck	effort?	
6. Agile	Ceremonies:	Were	our	Agile	Ceremonies	well	run	and	effective?	
7. Passivity	Enforced:	Did	we	design	for	passivity/Did	we	design	without	clients	needing	a	downtime?	
8. Validate	Passivity:	Did	we	validate	passivity	before	deployment?	Did	we	validate	that	clients	will	not	

need	a	downtime?	



Zero	to	Metrics-Driven	Hero	Page	-	5	
 

9. Released	on	Time:	Did	we	meet	our	release	milestone?	
10. No	Known	Issues:	Did	we	resolve	all	identified	functional	issues	prior	to	release?	
11. Tech	Debt	Introduced:	Did	we	tie	up	all	loose	ends	after	the	project	was	"finished"?	
12. Technical	Debt	Resolved:	Did	we	resolve	any	previously	existing	technical	debt?	
13. Well	Documented:	Did	we	document	project	scope,	leftovers,	requirements,	hazards,	reference	pages,	

concept	pages,	schema	documentation,	and	diagrams?	
14. No	Negative	Impact	on	the	System:	Did	we	measure	performance	impact	on	the	system	and	create	no	

harm?	
15. Feature	Enabled	on	Time:	Did	we	build	a	product	that	was	good	enough	to	make	available	to	end	users	

right	away?	
16. Time	Management:	Did	we	use	our	time	effectively?	
17. Meetings:	Did	we	invite	all	the	appropriate	stakeholders	to	the	meetings?	
18. No	Break/Fix	Cycle	Post-Deployment:	Did	we	avoid	the	need	for	a	break/fix	cycle	for	issues	uncovered	

by	early	adopters?	
19. Does	What	User	Wants	(Early	Adoption):	Did	we	identify	and	implement	success	metrics	to	track	early	

adoption?	Are	they	showing	success?	
	

Here	were	the	items	that	we	came	up	with	for	the	quarterly	survey	sent	out	to	the	teams	that	we	worked	with:	
1. 	Unresolved	Issues:	Did	we	leave	any	functional	issues	unresolved	prior	to	release?	
2. Meeting	Deadlines:	Did	we	meet	our	release	milestones?	
3. Response:	 How	 well	 did	 our	 team	 respond	 to	 your	 requests	 for	 changes	 or	 updates	 in	 a	 timely	

manner?	
4. Process:	How	well	did	we	document	project	scope,	requirements,	design,	diagrams,	and	discussions?	

Were	scrum	/	sync	meetings	held	regularly?	How	effective	were	scrum	/	sync	meetings?	Did	we	plan	
and	 execute	 the	 project	well	 and	without	 an	 all-hands-on-deck	 effort?	What	 other	 feedback	 do	 you	
have	 for	 the	 project's	 process?	 How	 well	 did	 our	 team	 follow	 your	 documented	 development	
processes?	

5. Kickoff:	 How	 well	 was	 project	 scope	 communicated	 /	 understood?	 How	 well	 were	 project	 roles	
communicated	/	understood?	What	 type	of	 collaboration	occurred	 (developed	 functionality	 that	my	
team	will	own	long-term/both	developed	functionality	that	needed	to	integrate	together)?	

6. Implementation:	How	well	did	our	 team	design	 for	passivity?	Did	we	 leave	any	 loose	ends	after	 the	
project	 was	 "finished",	 or	 create	 any	 technical	 debt	 for	 you?	 Did	 you	 have	 adequate	 time	 to	 give	
attention	to	this	project?	How	well	did	we	deploy	frequently	and	integrate	early	and	often?	

7. Feedback	 Loop:	 What	 other	 feedback	 do	 you	 have	 about	 the	 collaboration	 effort	 on	 this	 project?	
Should	we	schedule	a	retrospective	meeting	to	discuss	this	project?	

5. RESULTS	

By	making	the	retrospectives	metric-driven,	we	were	able	to	start	measuring	and	putting	action	plans	based	on	
feedback	and	collaboration.	By	doing	this,	we	were	able	to	move	the	team	towards	becoming	lean	by	focusing	
on	turnaround	time	and	amount	of	work	completed.	Our	standups	turned	into	updates	and	daily	planning.	The	
team	changed	to	story-pointing	everything	at	a	“3”,	as	that	was	determined	to	be	the	smallest	amount	of	work	
that	we	could	 finish	 in	 two	week	 iterations.	We	used	 this	breakdown	 to	 continue	 to	have	 the	 story-pointing	
discussions	that	we	had	while	using	scrum,	but	we	turned	the	talking	points	into	focusing	on	how	we	can	make	
our	stories	even	smaller.	Then	we	looked	into	how	we	were	doing	our	estimates.	Since	we	didn’t	own	the	code	
base,	we	often	had	to	depend	on	the	team	we	were	working	with	to	do	the	estimating.	Of	course,	there	was	a	
learning	 curve	or	 things	 that	 they	 thought	were	 implied.	We	started	 to	measure	how	many	new	stories	and	
tasks	were	logged	outside	of	our	initial	estimate	to	come	up	with	an	average	of	scope	creep	or	learning	curve	
stories	logged	per	quarter	that	we	then	used	to	make	our	overall	project	estimation	even	better.		

The	thing	that	we	learned	while	going	through	these	changes,	 is	 that	our	team	was	prone	to	scope	creep.	
Instead	of	talking	about	why	we	weren’t	estimating	correctly,	we	shifted	to	measuring	how	much	scope	creep	
we	would	have	 every	quarter.	We	 then	used	 that	 to	work	 through	 the	 average	 and	kept	 that	 in	mind	when	
making	commitments.	As	we	were	constantly	working	in	other	teams’	code	bases,	we	needed	to	recognize	that	
making	 estimates	 wouldn’t	 be	 accurate	 if	 we	 weren’t	 familiar	 with	 the	 subject	 matter.	 By	 catering	
retrospectives	to	results,	we	included	our	numbers	and	discussed	them	with	the	team	so	that	they	could	have	
full	visibility,	as	the	quarter	went	on,	and	not	be	surprised	by	anything	that	we	were	tracking.		



Zero	to	Metrics-Driven	Hero	Page	-	6	
 

By	including	the	engineers	on	the	team	in	coming	up	with	a	retrospective	format,	we	were	able	to	get	better	
feedback	and	cut-down	on	the	amount	of	stories	that	were	>	10	days.	This	helped	to	build	a	safe	space	for	the	
team	 to	 talk	 about	 issues	 that	were	 going	on	with	 them	 constantly	 contributing	 feedback	 to	make	 the	 team	
better.	 By	 ensuring	 there	 was	 a	 safe	 space	 for	 idea	 generation,	 we	 were	 able	 to	 get	 more	 buy-in	 to	 any	
experimentation	that	we	tried	as	a	team.	Overall,	I	think	we	did	a	good	job!		

6. WHAT	WE	LEARNED	

Use	metrics	to	drive	your	decisions	when	planning	sprints	and	in	Big	Room	Planning.	But	first,	find	the	metrics	
that	your	team	needs	to	use	to	estimate.	As	we	said	before,	our	team	is	prone	to	scope	creep,	so	we	track	our	
scope	creep	stories	and	add	the	percentage	of	the	average	scope	creep	stories	from	our	previous	quarters	to	
our	estimates	for	future	quarters.	Then,	be	persistent	in	your	pursuit	of	becoming	an	Agile	hero.	Not	everything	
that	you	try	will	work,	and	not	everything	that	works	for	the	teams	around	you	will	work	for	your	team.	Last,	
remember	to	ensure	that	you	and	your	team	understand	why	you	are	following	the	processes	that	you	are,	or	
else	you	will	risk	not	receiving	value	from	them.	

7. ACKNOWLEDGEMENTS	

I wish to thank Shawn Scrivner and Amber Beerends for allowing me to experiment with their team. I 
also wish to thank my Shepherd, Krish Srinivasan, for all of the feedback throughout the process. I 
wish to thank my cat, Pepper Jack, for being cute enough to distract me from working. Finally, I wish 
to thank my husband, Jason, for making sure I remain sane at work and at home.	
REFERENCES		
[1]	Scaled	Agile	Framework,	webpage:	https://www.scaledagileframework.com/pi-planning/		
[2]	ActionableAgile	website:	https://actionableagile.com/	
[3]	KanbanSim	http://focusedobjective.com/kanbansim-and-scrumsim-v1-1/		
	
	


