
 

	
David	Laribee,	Atlanta	USA;	email:	david@kata.io	
Copyright	2020	David	Laribee. 

Refactoring	with	Observability:	Novel	Practices	for	Learning	
DAVID	LARIBEE,	Kata.io	

Best	practices	 imply	 a	 vision	 for	how	a	 team	might	behave	or	 employ	 tools.	 It’s	 only	by	 engaging	 in	 real	work	 that	we	 find	how	 those	
practices	 fit	our	actual	context.	This	paper	details	 the	origin	story	of	 two	novel	practices,	Refactoring	with	Telemetry	and	Architectural	
Mapping,	and	the	process	by	which	we	discovered	them,	after	finding	an	impedance	mismatch	between	the	practice	as	advertised	and	the	
realities	presented	by	larger,	more	complex	systems.	

1. INTRODUCTION	

In	a	perfect	world,	everyone	on	your	team	would	have	a	clear	representation	of	the	systems	they	work	on	in	
their	 head.	 If	 you	 asked	 engineers	 to	 come	 up	 to	 a	 whiteboard	 and	 draw	 a	 picture	 of	 their	 software	
architecture,	 they’d	each	produce	a	clear,	 lucid	diagram	in	a	matter	of	minutes.	Taking	a	step	back,	we’d	see	
each	 individual’s	 picture	would	 resemble	 their	 neighbor’s:	 evidence	 that	 the	 team	 shares	 a	 single,	 cohesive	
mental	model	about	how	their	system	is	organized	and	operated.	

This	 scenario	 describes	 the	 rosy	worldview	 of	 “best	 practices.”	 It	 is	 an	 aspiration	 or	 vision	 gained	 only	
through	deliberate	practice	and	conscious	discipline.	I’ve	had	a	problem	with	the	term	“best	practice”	for	a	long	
time	now	because	 they	 seem	 to	 frame	 an	 alternative	workflow	as	 a	 promised	 land,	 a	 panacea.	 Between	 the	
starting	 point	 of	 selecting	 a	 practice	 and	 the	 destination	 of	 deriving	 value	 from	 the	method,	 there’s	 often	 a	
profound	 journey	 of	 adaptation	 and	 understanding.	What	 you	 end	 up	 doing	might	 even	 be	 a	 new	 practice	
altogether.	

As	a	coach	and	consultant,	this	conflict	comes	up	in	a	lot	of	the	client	work	I	do.	Listening	to	this	friction	and	
channeling	it	into	a	better,	more-productive	learning	experience	is	a	big	part	of	the	job	for	me.	Sometimes	this	
leads	me	and	the	teams	I’m	coaching	into	new	territory	and	onto	new	ideas	for	how	our	practice	should	change	
depending	on	our	context.	

This	 paper	 details	 the	 origin	 of	 two	 novel	 practices	 that	 help	 teams	 effectively	 refactor	 large,	 complex	
software	systems:	Refactoring	with	Telemetry	and	Architectural	Mapping.	

Refactoring	with	 telemetry	 establishes	 a	 tight	 feedback	 loop	 between	 structural	 changes	 a	 development	
team	makes	and	sometimes	esoteric	code	quality	metrics.	It’s	an	easy-to-use	learning	tool	that	makes	clear	the	
close	relationship	between	small,	continuous	refactoring	and	long-term	sustainability.	

To	map	architectures	and	previsualize	changes,	we	use	the	C4	Model	of	software	architecture.	A	subset	of	
UML,	C4	turns	diagrams	into	useful	maps	relevant	for	different	audiences	and	contexts	(business	stakeholders,	
ops,	and	dev	staff).	I’ll	share	how	we	engage	teams	in	the	mapping	process	and	use	the	maps	to	align	technical	
debt	repayment	with	 the	delivery	of	value,	 invite	multiple	perspectives	and	new	ideas,	and	engender	shared	
mental	models	around	larger	legacy	systems.	Think	of	it	as	story	mapping	for	systems.	

I’ll	 share	 the	 mechanics	 of	 these	 practices,	 giving	 you	 an	 idea	 of	 how	 to	 refine	 your	 own	 practice	
experiments	using	our	results	as	a	point	of	acceleration.	More	importantly,	I’ll	reflect	on	the	starting	conditions	
required	 to	be	 in	place	 to	create	and	discover	your	own	new,	more	relevant	practices.	 I’ll	 challenge	 the	 idea	
that	best	practices	are	a	universal	 truth;	 their	 real	value	 is	 in	 creating	a	 starting	point	 to	 find	 ideas	you	can	
incorporate	into	your	own	workflow.	It’s	not	the	destination.	It’s	the	journey.	

2. BACKGROUND	

One	 of	 the	 practices	 I	 teach	 is	 Test	 Driven	 Development	 (TDD).	 TDD	 is	 very	 much	 about	 achieving	 and	
maintaining	 a	 state	 of	 simplicity	 and	 minimalism	 in	 your	 design:	 just	 enough	 code	 to	 satisfy	 the	 delivery	
requirement	 and	 not	 a	 line	 more.	 This	 state	 helps	 us	 introduce	 new	 changes	 safely	 as	 we	 learn	 about	 the	
problem	we’re	solving.	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	2	
 

What	happens	when	you	show	up	to	teach	a	2-day	class	on	how	to	practice	TDD	with	20	adult	learners	who	
work	on	heavily	coupled	 legacy	systems	with	high	cognitive	 load?	 In	our	controlled	classroom	environment,	
we	can	happily	and	productively	test-drive	sample	exercises	all	day	long,	but	what	happens	when	teams	return	
to	their	day	job	where	they	find	it	impossible	to	write	even	a	single	isolated	test?	

When	I	started	spending	time	with	these	teams	 in	a	coaching	capacity,	an	epiphany	came	to	me	after	 the	
class	concluded.	What	I	discovered	was	that	TDD,	as	a	best	practice,	did	not	apply	to	this	group’s	context.	At	
most,	TDD	was	an	aspiration.	Rather	than	starting	by	writing	a	failing	test,	they	needed	to	lead	with	refactoring	
and	tidying	their	codebase	so	they	might	maneuver	with	a	design	practice	such	as	TDD.	This	group	needed	a	
playbook	that	was	much	more	context-specific	than	any	book	about	or	class	on	TDD	could	provide.	

The	 Cynefin	 framework	 [Snowden]	 helps	 in	 reasoning	 about	 domain	 complexity	 and	 what	 kinds	 of	
practices	we	might	expect	to	be	successful,	given	our	context	(see	Figure	1	-	The	Cynefin	Framework).		

	

 
Figure	1:	The	Cynefin	Framework	

The	group	I	described	working	with	above	was	probably	operating	in	the	“complex”	or	“chaotic”	domains.	
In	 this	 domain,	 we	 have	 to	 tend	 to	 change	 our	 systems	 through	 a	 series	 of	 small,	 safe-to-fail	 experiments	
(complex)	or	by	reacting	to	interpretations	and	correlations	of	events	(chaotic).	TDD,	on	the	other	hand,	as	a	
best	practice,	makes	a	lot	of	sense	in	the	“obvious”	domain.	As	a	design	methodology,	 it’s	going	to	work	a	lot	
better	when	you	begin	to	design.	As	is	often	said,	TDD	is	a	whole	lot	easier	to	practice	and	understand	when	
we’re	starting	from	scratch,	on	a	greenfield	product	or	a	2-day	training	class.		

Cynefin	 (Figure	1)	 tells	us	 that	 if	we’re	operating	 from	“complex”	or	 “chaotic,”	we	might	need	 to	 look	 for	
practices	 that	 are	 emerging	 or	 invent	 our	 own,	 so-called	 "novel	 practices."	 As	 teachers	 and	 coaches,	 we	
probably	need	to	look	for	a	different	venue	to	operate	from	this	understanding.	Classrooms	are	not	the	right	
setting.	Pre-planned	exercises	often	lose	relevance	when	it	comes	time	to	implement	the	practice.	

Since	2015,	we’ve	been	experimenting	with	immersive	learning	environments	called	“dojos.”	I	was	part	of	
an	 initiative	 at	 a	 large	 retailer	 where	 we’d	 take	 teams	 on	 a	 6-week	 journey	 of	 learning	 centered	 on	 their	
authentic	backlog	and	real	systems.	It’s	a	radical	departure	from	the	standard	model	of	organizational	learning:	
training	classes,	certifications,	hire	an	army	of	coaches,	rinse-and-repeat	transformation,	etc.	

This	model,	or	something	like	it,	is	an	essential	factor	in	getting	to	a	place	where	practices	can	be	invented	
(novel)	 and	 refined	 (emerge).	 For	 each	 practice,	 Refactoring	with	 Telemetry	 and	 Architectural	Mapping,	 I’ll	
describe	 the	moment	where	pattern	matching	and	 team-coach	collaboration	 led	us	collectively	 to	something	
that	didn’t	resemble	a	well-known	best	practice.	Let’s	start	with	Refactoring	with	Telemetry.	

3. REFACTORING	WITH	TELEMETRY	

Refactoring,	 as	 defined	 by	Martin	 Fowler	 [Fowler],	 is	 “changing	 the	 structure	 of	 code	 without	 changing	 its	
behavior.”	 Structuring	 complex	 code	 into	 more	 generalized	 solutions	 that	 are	 easier	 to	 comprehend	 and	
maintain	is	also	an	essential	step	in	the	TDD	loop:		

1. Red	-	write	a	failing	test.	
2. Green	-	write	just	enough	code	to	make	the	test	past.	
3. Clean	-	refactor	your	code	to	a	cleaner,	more	comprehensible	state.	
4. Repeat	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	3	
 

The	TDD	loop	encounters	disharmony	when	working	with	existing	code	that	not	designed	in	this	manner.	
The	first	problem	engineers	are	likely	to	encounter	when	adapting	TDD	to	a	monolithic	legacy	system	is	how	to	
get	 existing	 code	 under	 test.	 Often	 their	 first	 attempts	 fail;	 large	 swathes	 of	 the	 system,	 including	 attached	
resources	and	external	dependencies,	get	pulled	into	a	test	harness.	Isolating	and	specifying	small	behaviors	is	
impossible	and	frustrating	when	you	have	to	deal	with	the	whole	world.	

3.1 Adapting	&	Unbundling	
After	the	class	and	my	epiphany,	I	found	myself	with	a	couple	of	teams	in	front	of	a	large	monitor	with	access	to	
their	actual	code,	backlog,	documentation,	and	other	supporting	artifacts.	Fresh	off	of	a	2-day	TDD	course,	we	
hunkered	down	in	a	large	conference	room	and	discussed	both	the	practicality	and	relevance	of	what	they	had	
just	learned.	The	same	concerns	kept	coming	up,	best	summarized	as:	how	do	we	start	writing	tests	first	when	
you	cannot	isolate	a	module,	class,	or	function?	

This	recognition	led	me	to	suggest	we	start	the	Red-Green-Clean	loop	at	the	clean	step.	Why	not	find	some	
refactoring	we	could	do	 to	get	 a	 chunk	of	 the	 code	 into	 isolation	and	make	new	stories	 impacting	 that	 code	
much	easier	to	get	into	a	test	harness?	In	effect,	we	unbundled	the	sub-practice	of	refactoring	from	the	parent	
practice	of	TDD.	We’re	still	in	the	territory	of,	if	not	best,	“good	practice.”	In	Cynefin	terms,	we’re	traveling	from	
the	domain	of	order	where	TDD	lives	(remember	TDD	works	best	when	we	start	with	that	design	approach)	
toward	the	team’s	state	of	“complex”	where	we’re	on	the	lookout	for	a	novel	or	emerging	practice.	It’s	time	to	
improvise	and	adapt.	

3.2 Where	do	we	start?	
Once	 we	 decided	 on	 a	 tactic	 for	 getting	 started,	 the	 next	 question	 prompted	 itself:	 what	 should	 we	 start	
refactoring?	The	group	chose	to	hunt	for	a	juicy	refactoring	target	the	majority	of	people	would	encounter.	It’s	
important	to	note	that	this	choice	would	be	a	lucky	turn	in	our	collective	discovery	of	a	new	workflow,	a	new	
practice.	You’ll	see	why	in	a	minute.	

We	had	access	to	a	static	analysis	tool	for	bringing	some	objectivity	to	our	code	quality	discussions.	In	this	
case,	we	had	NDepend	 [NDepend]	available	 to	us,	 a	powerful	 tool	 that	yields	all	 kinds	of	 insight	 into	what’s	
happening	in	a	codebase	as	a	whole.	Without	going	into	extreme	detail,	NDepend	makes	it	easy	to	find	large,	
complex	classes	 that	make	 for	high-value	 targets	of	refactoring	opportunity	(see	Figure	2:	NDepend:	Metrics	
View).	

 
	

Figure	2	–	NDepend	Metrics	View	

NDepend’s	“Metrics	View”	presents	a	heatmap	of	color-coded	squares.	The	smaller	squares	each	represent	
a	class	in	the	system.	The	color	of	the	square	indicates	the	class’s	total	complexity,	with	red	exceeding	a	user-
defined	threshold.	Complexity	tells	us	how	many	execution	paths	through	a	class	there	are.	As	a	metric,	it’s	a	
directly	correlated	leading	indicator	of	cognitive	load.	High	complexity	in	classes	might	mean	code	that’s	hard	
to	 understand.	 The	 area	 of	 each	 square	 indicates	 the	 number	 of	 lines	 of	 code.	 Large,	 red	 boxes	 tend	 to	 be	
hotspots	 where	 there’s	 probably	 some	 level	 of	 implementation	 debt	 accumulating.	 These	 often	 present	 an	
excellent	prospect	for	a	refactoring	mission.	

	Having	found	our	target,	we	started	by	writing	a	basic	unit	test.	Literally:	find	a	public	method,	call	it	with	
some	 arguments,	 and	 capture	 the	 return	 value	 through	 a	 debugger,	 then	 paste	 it	 into	 an	 assertion.	Michael	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	4	
 

Feathers	calls	 this	a	Characterization	Test	 [Feathers].	The	point	of	 these	 tests	 is	 to	create	an	early	detection	
system	for	breaking	changes	you	might	inadvertently	introduce.	We	co-opted	this	technique	to	do	some	quick	
analysis	 about	 how	 isolated	 the	 class	 was	 and,	 in	 turn,	 how	 hard	 it	 would	 be	 to	 pull	 that	 class	 into	 a	 test	
harness.	Write	 the	 test	 quickly	 and	 hastily,	 run	 it,	 and	 see	what	 kind	 of	 runtime	 errors	 it	 produces.	 Those	
runtime	errors	help	us	focus	on	our	goal	of	bringing	this	class	under	test	and	give	us	more	visible	targets	for	
refactoring;	we’re	down	to	the	method	level.	

We	found	a	common	culprit.	The	method	we	were	testing	had	a	bunch	of	dependencies	instantiated	in	its	
body.	 There	 was	 no	 hook	 in	 which	 to	 introduce	 a	 fake	 dependency	 we	 could	 control	 from	within	 our	 test	
arrangement.	 We	 began	 to	 refactor	 the	 class	 to	 permit	 this	 behavior.	 Our	 goal	 was	 to	 be	 able	 to	 write	
specifications	in	the	form	of	tests	on	this	class,	but	we	needed	to	begin	by	refactoring.	

3.3 A	Novel	Practice	Emerges	
The	 refactorings	 were	 many	 and	 frequent.	 We	 introduced	 class	 instance	 variables,	 changed	 constructor	
parameters,	 and	 discussed	 principles	 such	 as	 Dependency	 Inversion,	 the	 strategy	 pattern,	 and	 test	 doubles.	
There	was	a	delightful	fusion	of	teaching,	learning,	and	doing.	Best	of	all,	it	was	happening	in	everyone’s	day-to-
day	codebase.	We	weren’t	“doing	TDD,”	but	we	were	getting	a	lot	of	value	out	of	understanding	the	qualities	of	
a	design	that	TDD	tends	to	yield	and	learning	how	to	use	moves	from	TDD	to	better	maneuver	in	legacy	code.	

So	 far,	what	 I’ve	described	may	 seem	 familiar	 to	you.	We’re	using	 tests	 and	 refactoring	 to	wrangle	 some	
messy	 code	 into	 something	 we	 can	 understand	 and	 perhaps	 even	 build	 on	 top	 of	 using	 a	 more	 TDD-like	
practice.	What	would	happen	next	seemed	like	hive	mind	magic	to	me	at	the	time.	

Someone	suggested	we	check	back	in	with	NDepend.	How,	exactly,	had	the	metrics	view	changed	since	we	
last	 looked?	NDepend	has	this	nice	feature	in	which	it	will	baseline	analysis	runs	and	show	you	metrics	on	a	
time-series	graph.	Figure	3	gives	you	an	NDA-friendly	sense	of	what	we	saw	after	a	few	refactoring	sessions.	

 
Figure	3	–	Changes	in	code	quality	metrics	over	time	across	refactorings	(right	to	left).	

You	can	see	how	the	code	quality	changes	as	our	refactoring	session	progresses!	We	were	able	to	perceive	a	
difference	in	our	SQALE	maintainability	index	[SQALE],	one	measure	of	technical	debt.	Over	several	hours	we	
were	able	to	drive	down	the	debt	in	a	300K+	line	code	base	of	about	1.2%.	Participants	in	the	room	reflected	
that	this	telemetry	gave	enough	evidence	to	go	forward	with	our	new	practice	of	refactoring-first	with	the	aid	
of	metrics	provided	by	NDepend.	Furthermore,	we	uncovered	a	handful	of	refactoring	combinations	that	would	
get	code	under	test	quickly.	These,	in	turn,	became	reusable	recipes	that	would	be	passed	around	and	adapted	
internally.	

I’ve	since	dubbed	this	 “Refactoring	with	Telemetry”	since	 it	 focuses	on	understanding	design	qualities	by	
using	code	metrics	 to	prompt	discussion	and	create	 teachable	moments	 throughout	an	extended	refactoring	
session.	 I’m	not	 trying	 to	push	 this	as	 the	next	big	 thing,	a	 future	best	practice,	but	 I	use	 it	 frequently	 in	my	
coaching	and	teaching	approach.	When	the	pattern	of	“how	do	we	do	this	TDD	stuff	in	this	complex	codebase”	
presents	 itself,	 this	 is	 my	 go-to	 technique	 for	 working	 toward	 the	 vision	 and	 value	 touted	 by	 TDD	 when	
working	in	legacy	code.	

4. ARCHITECTURAL	MAPPING	

Let’s	return	to	the	architectural	diagramming	scenario	I	began	this	paper	with.	I	suggested	an	ideal	team	would	
have	 a	 common	 understanding	 of	 their	 software	 architecture,	 to	 the	 point	 that	 they’d	 all	 produce	 similar	
diagrams	when	asked.	This	scenario	derives	from	another	instance	where	we	discovered	a	new	practice	out	of	
need	and	in	a	group	learning	setting.	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	5	
 

4.1 Situational	Awareness	
This	experience	centers	on	a	coaching	engagement	with	a	team	at	a	large	financial	services	organization	in	an	
immersive	learning	environment,	a	dojo.	Part	of	the	dojo	involves	doing	discovery	on	a	real	business	problem	
we’d	like	to	solve	during	a	team’s	6-week	challenge.	Our	standard	discovery	toolkit	includes	a	practice	called	
user	story	mapping	[Patton].	Story	maps	help	us	visualize	the	path	a	user	will	take	through	our	digital	product	
as	 they	 attempt	 to	 complete	 a	 task	 that’s	 important	 and	 valuable	 to	 them.	 Story	 mapping	 is	 an	 excellent	
technique	for	centering	your	backlog	on	the	user.	That’s	the	context	in	which	it	works	best.	

We	 began	 story	 mapping	 with	 the	 group.	 As	 we	 took	 them	 through	 the	 steps,	 we	 encountered	 a	 lot	 of	
friction.	We	weren’t	getting	the	kind	of	engagement	we	usually	do	from	groups.	We	weren’t	able	to	get	into	the	
flow	 of	 story	mapping.	 One	 of	 the	 team	members	 suggested	 the	 nature	 of	 their	 system	was	 hampering	 our	
ability	to	apply	the	practice	of	story	mapping.	

We	quickly	learned	that	the	system	we	were	working	on	was	a	99%	back-end,	API-driven,	“lights	out”	kind	
of	 system,	 not	 uncommon	 in	 the	 financial	 world.	 The	 only	 user	 interaction	 with	 the	 system	 was	 a	 small	
dashboard	that	effectively	acted	as	a	monitoring	window	for	automated	business	transactions	and	workflows.	
Story	mapping,	as	part	of	a	user-centered	design	workflow,	did	not	apply.	

4.2 Introducing	an	Engaging	Experiment	
The	feedback	of	our	failed	attempt	at	story	mapping	yielded	new	insight	that	helped	our	coaching	team	guide	
the	team	onto	a	better	method	of	discovery.	I	suggested	we	employ	a	mapping	technique	better	suited	to	the	
terrain	we	now	knew	ourselves	to	be	in:	C4	Modeling	[Brown].		

C4	Modeling	 is	 an	 approach	 to	 architectural	 diagramming	 that	 turns	 your	diagrams	 into	 zoomable	maps	
(see	figure	4).	

 
Figure	4	–	C4	Architecture	Diagrams	&	“Zoomable”	Levels	of	Detail	

At	the	highest	level	(context)	we	depict	system	context.	This	is	the	10,000’	view	that	lets	us	see	which	users,	
upstream	and	downstream	internal	systems,	attached	resources	(shared	databases,	queues,	streams,	etc.)	and	
third-party	services	comprise	the	ecosystem	of	dependencies	in	which	our	system	lives.	

From	there,	we	can	“pinch	zoom”	 into	containers,	which	tells	us	more	about	the	distribution	method	and	
technical	 stacks	 of	 the	 pieces	 of	 our	 system.	 Zooming	 in	 on	 any	 container	 leads	 us	 to	 a	 deeper	 level,	 a	
component	diagram,	that	gives	us	a	sense	of	the	logical	arrangement	of	the	system,	the	solution	architecture.	
The	 lowest	 level	 takes	 us	 down	 to	 the	 actual	 code,	 showing	 us	 the	 structure	 and	 interaction	 between	 key	
modules,	classes,	or	functions.		

We	tackled	building	a	few	layers	of	these	maps,	just	enough	to	get	into	the	problem	we’d	be	working	on,	in	a	
social	manner	using	a	lightweight	version	of	mob	programming.	Each	person	on	the	team	took	a	turn	drawing	
diagrams	as	both	team	and	coach	took	turns	asking	questions	or	sharing	facts	about	the	system	(see	Figure	5).	
The	effect	was	very	engaging	and	informative	for	the	whole	group.	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	6	
 

 
Figure	5	–	Team	Creating	&	Discussing	C4	Diagrams	

The	point	of	discovery	is	for	the	team	to	learn	about	not	only	who	you’re	developing	for,	your	user,	but	also	
what	system	you	plan	to	create	or	modify.	The	feedback	we	got	from	this	session	was	great.	Developers	newer	
to	 the	 system	 emerged	 with	 much	 more	 awareness	 of	 what’s	 going	 on	 in	 this	 large,	 potentially	 daunting	
codebase.	The	session	went	from	sputtering	to	spectacular	after	we	pivoted	from	story	mapping.	
4.3 Architecture	as	a	Map,	Features	as	Journeys	
Stoked	by	insight	and	conversation,	we	moved	on	to	create	a	plan	to	implement	a	new	feature	in	the	system.	
The	 team	 decided	 to	 convert	 their	 paper	 diagrams	 into	 a	 digital	 format	 and	 use	 this	 diagram	 to	 create	 a	
walkthrough	of	the	changes	necessary	to	implement	the	feature	(see	Figure	6).		

	

 
	

Figure	6	–	Plotting	a	course	with	an	architectural	map.	

At	 this	 point,	we	 reached	 for	 a	 tool	 from	 story	mapping	 itself	 and	 created	 journeys	 through	 the	 system.	
Unlike	story	mapping,	this	was	not	a	particular	user’s	journey	but	rather	the	flow	of	a	piece	of	data	originating	
from	 an	 upstream	 system	 and	 emerging	 as	 enriched	 messages	 consumed	 by	 a	 number	 of	 downstream	
applications.	The	map	was	different	because	the	terrain	was	different,	but	once	we	had	a	map,	we	were	able	to	
unbundle	 the	 journeying	 technique	 and	 apply	 it	 to	 our	 new	 architectural	 map.	 The	 essential	 outcome	 was	
similar	 between	 our	 new,	 cobbled	 together	 practice	 and	 story	 mapping:	 team	 members	 can	 see	 a	 route	
overview	of	where	their	work	is	likely	to	take	them.	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	7	
 

5. TOWARD	BETTER	PRACTICES	

Best	 practices	 often	 imply	 a	 specific	 context	 that	makes	 them	 the	 best	 choice	 inside	 of	 a	 particular	 context.	
Rather	than	treat	best	practices	as	a	hard	goal,	experiences	like	the	above	have	convinced	me	we’re	better	off	
starting	with	them	as	an	aspirational	vision,	which	we	can	refine	as	we	learn	our	context	over	time.	Doctrine	is	
sometimes	 a	 useful	 starting	 point	 but	 becomes	 problematic	 when	 we	 insist	 on	 rigorous	 adherence	 at	 the	
expense	of	learning	and	situational	awareness.	

How	might	 we	 place	 ourselves	 in	 a	 position	 where	 we	 can	 discover	 valuable,	 possibly	 novel	 practices?	
There	are	four	components	I	focus	on	as	I	head	into	“adopt	practice	X”	type	engagements:	separating	content	
from	context,	creating	a	real-world	learning	environment,	adopting	an	experimental	mindset,	and	unbundling	
practice	elements.	I’ll	explore	these	components	through	the	story	of	how	we	arrived	at	both	Refactoring	with	
Telemetry	and	Architectural	Mapping.	

5.1 Separate	Content	from	Context	
Best	 practices	 are	 content.	 Recognizing	 a	 fit	 between	 the	 current	 problem	 and	 previous	 experience	 is	 a	

matter	 of	 discovery	 and	 adaptation:	 discover	 context,	 adjusting	 to	 fit,	 repeat.	 Adaptation	 happens	 where	
content	 and	 context	 meet,	 and	 its	 outcome	 is	 potentially	 a	 new	 practice.	 Context	 discovery	 and	 practice	
adaptation	isn’t	a	mystical	process;	it	requires	that	you	listen	and	that	a	group	is	willing	to	try	something	new.	
This	mechanism	explains	how	we	started	with	a	goal	of	Story	Mapping	and	arrived	at	Architectural	Mapping.		

Architectural	Mapping	came	out	of	a	desire	to	visualize	a	backlog	outside	of	your	typical	work	item	tracking	
system.	 What	 we	 didn’t	 know	 at	 the	 start	 is	 that	 the	 target	 system	 was	 devoid	 of	 user	 interaction.	 Story	
Mapping	is	a	good	fit	when	the	terrain	is	user	interaction.		

Similarly,	 the	 fit	 between	TDD	 and	 legacy	 systems	 can	 sometimes	 be	 awkward.	 I’m	not	 saying	 it	 doesn’t	
work,	but	you	have	to	go	about	it	differently.	Often	you	have	to	write	a	few	tests	and	tease	code	out	of	coupling	
before	you	get	into	the	red-green-refactor	loop.		

5.2 Create	a	Real-world	Learning	Environment	
Both	 practices	 emerged	 from	 a	 real-world	 learning	 environment.	 That	 is,	 we	 weren’t	 learning	 through	
prepared	lab	exercises	or	simulation.	We	were	confronting	the	team’s	actual	problems	and	testing	practices	on	
their	real	system	and	desired	impacts.		

In	the	case	of	Refactoring	with	Telemetry,	we	had	to	get	out	of	the	controlled	environment	of	a	2-day	TDD	
class	where	 context	 and	 content	 are	 carefully	 controlled	variables.	 I	much	prefer	 a	workshop	 setting	over	 a	
classroom	setting	as	it	lets	us	explore	practices	and	adaption	to	a	team’s	situation	simultaneously.	Adaptation	
is	a	joint	effort	and	not	a	puzzling	exercise	left	to	the	student	when	they	return	to	their	day	job.	

5.3 Adopt	an	Experimental	Mindset	
When	you’re	 in	 such	environments	engendering	a	 safe-to-fail	 ethos	 is	paramount.	Adopting	an	experimental	
mindset	means	that	 if	an	attempt	doesn’t	go	as	planned,	you	process	this	 failure	as	 information,	 feeding	that	
forward	 into	your	next	effort.	We	are	 leaving	 the	domain	of	authority	and	doctrine	and	entering	 the	 field	of	
collaboration	and	discovery.		

Creating	these	environments	starts	with	setting	the	tone	and	often,	for	us	consultants,	with	pre-negotiating	
our	 engagement	model	with	 the	 clients	we’re	 serving.	 As	 a	 coach,	 I	 help	 to	 nurture	 these	 environments	 by	
modeling	behaviors	consistent	with	an	experimental	mindset.	Once	 the	group	sees	me	suggest	a	path,	and	 if	
that	path	 fails,	 they	can	see	how	 I	 recover	and	suggest	a	pivot.	Even	better,	 they	may	suggest	an	alternative	
route	themselves,	thereby	conscripting	themselves	into	our	friendly	experimental	conspiracy!	Do	this	enough	
and	 you’ll	 stop	 thinking	 of	 failure	 and	 start	 seeing	 productive	 feedback	 loops	 in	 play,	 seeing	 and	 exploiting	
them	to	the	group’s	advantage.	

5.4 Unbundle	Practice	Elements	to	Curate	Novelty	
So	far,	 I’ve	covered	pattern	matching	and	creating	the	conditions	where	original	practices	might	emerge.	But	
how	do	we	construct	and	assemble	new	loops	and	workflows?	If	we	were	to	crack	open	a	given	“best	practice,”	
we	can	find	ideas	for	experiments	to	try	on	our	way	to	finding	value	in	the	form	of	fit	and	adaptation.	

Unbundling	practices	happened	in	both	examples	I’ve	given.	Refactoring	with	Telemetry	is	a	new	workflow	
that	uses	components	of	TDD.	We’re	writing	a	 few	tests,	and	we’re	doing	automated	refactoring.	Adding	 in	a	
static	analysis	tool	such	as	NDepend	and	finding	a	rhythm	yields	a	new	practice	ideally	suited	to	our	context.	

The	same	is	true	for	Architectural	Mapping.	We	pivoted	from	Story	Mapping	to	C4	Model	when	it	became	
clear	 that	Story	Mapping	wasn’t	 the	right	 tool	 for	our	 job.	However,	we	did	bring	back	a	key	component	we	



Refactoring	with	Observability:	Novel	Practices	for	Learning:	Page	-	8	
 

traditionally	use	in	our	story	mapping	practice:	journeys.	Instead	of	tracing	a	user’s	potential	journey	through	
the	user	interface	of	our	software,	we	were	previsualizing	a	message’s	journey	through	the	components	of	our	
software.		

A	word	of	caution:	unbundling	isn’t	easy.	It	takes	someone	who	knows	the	practice	well	and	is	ready	and	
willing	to	tease	components	apart.	Success	requires	some	mastery:	a	willingness	to	break	the	rules	after	having	
worked	within	those	constraints	for	some	time.	These	components	serve	as	rich	experimental	fodder,	but	only	
when	we	adopt	the	right	mindset	and	create	the	conditions	where	experiments	can	happen.	

5.5 Start	with	Learning,	Experimentation,	and	Situational	Awareness	
Experiences	 like	 these	 have	 helped	 me	 reconcile	 some	 of	 the	 internal	 unease	 I’ve	 had	 with	 the	 term	 best	
practice.	I	now	see	best	practices	as	a	helpful	jumping-off	point	for	a	new	workflow	that	will	serve	a	particular	
team.	Best	practices	are	harmful	when	we	 fail	 to	 take	our	 context	 into	account	or	are	unwilling	 to	bend	 the	
rules	to	match	our	situation.	Without	situational	awareness,	best	practices	can	quickly	become	a	quixotic	time	
waster.	When	we	combine	this	awareness	with	learning,	experimentation,	and	flexible	expertise,	we’re	able	to	
adapt	best	practice	vision	to	a	team’s	or	organization’s	maximum	benefit.	

6. ACKNOWLEDGEMENTS	

I’d	like	to	thank	the	many	teams	that	have	demonstrated	a	willingness	to	go	down	sometimes	weird	and	dead-
end	paths	with	me	in	search	of	adapting	new	practices.	Unfortunately,	non-disclosure	agreements	prohibit	me	
from	calling	them	out	by	name.	

I’d	 also	 like	 to	 acknowledge	 Ed	Tilford’s	 role	 in	 helping	 us	 pivot	 to	 Architectural	Mapping.	 Ed	 is	 a	 great	
coaching	partner	and	a	strategic	thinker	whose	collaboration	I	value	highly.	Maneuvering	a	team	onto	value	is	
always	easier	with	him	in	the	room.	

Also,	 a	 huge	 thank	 you	 to	 my	 shepherd	 in	 the	 XP	 2020	 Experience	 Report	 writing	 process,	 Dr.	 Cherifa	
Mansoura.	Without	 her	 economical	 and	well-placed	words	 of	wisdom	 and	 guidance,	 I’d	 still	 be	writing	 this	
paper.	
REFERENCES		
[Brown]	Simon	Brown,	2020.	The	C4	Model	for	Visualizing	Software	Architecture:	Context,	Containers,	Components,	Code.	Available	online	at	
https://c4model.com/.	[Accessed	20	May	2020]	
[Feathers]	Michael	Feathers,	2004.	Working	Effectively	With	Legacy	Code.	Prentice	Hall.	
[Fowler]	Martin	Fowler,	2018.	Refactoring:	Improving	the	Design	of	Existing	Code	(2nd	Edition).	Addison	Wesley	Professional.	
[NDepend]	NDepend,	v2020.1.1,	2020.	ZEN	PROGRAM	LTD.	
[Patton]	Jeff	Patton,	2014.	User	Story	Mapping:	Discover	the	Whole	Story,	Build	the	Right	Product.	O’Reilly	Media.	
[Snowden]	David	J.	Snowden,	2007.	Harvard	Business	Review:	A	Leader’s	Framework	for	Decision	Making.	Available	online	at	
https://hbr.org/2007/11/a-leaders-framework-for-decision-making.	[Accessed	20	May	2020]	
[SQALE]	 Jean-Louis	 Letouzey,	 2016.	 The	 SQALE	 Method	 for	 Managing	 Technical	 Debt.	 Available	 online	 at	 http://www.sqale.org/wp-
content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf	[Accessed	20	May	2020]	
	
	
	
	


