

Dae-Ho Chung, Optimizely; email: tsukino@gmail.com
Keith Nottonson, Optimizely email: keithn@gmail.com
Jeffrey Sing, Optimizely; email: jeffsing@gmail.com
Copyright 2020 is held by the author(s).
	

Delighting	our	Customers:	Innovation	and	Experimentation	
at	Optimizely	
DAE-HO	CHUNG,	Senior	TPM,	Engineering	Operations,	Optimizely	
KEITH	NOTTONSON,	Senior	Director,	Product	Operations,	Optimizely		
JEFFREY	SING,	Software	Quality	Engineering	Manager,	Optimizely	

No	matter	how	much	data	analysis,	user	feedback	and	competitive	research	you	conduct,	there’s	always	a	chance	you	will	get	it	wrong.	And	
getting	 it	wrong	comes	 in	 two	forms:	building	the	wrong	product	and	building	the	product	wrong.	To	avoid	these	outcomes	Optimizely	
uses	an	experiment-driven	product	development	cycle.	Experiments	are	run	during	all	the	different	stages	of	their	product	development	
lifecycle.	Learn	how	Optimizely	uses	experimentation	throughout	their	entire	product	development	lifecycle,	and	the	different	ways	they	
encourage	and	support	innovation.	

1. INTRODUCTION	

On	the	Iron	Chef,	a	cooking	competition	show,	contestants	try	to	make	the	best	dishes	with	specific	ingredients,	
and	the	judges	grade	and	pass	judgment	on	the	steaming	dishes.	The	criteria	the	judges	look	at—taste,	plating	
(appearance)	and	originality—are	very	similar	to	how	we	innovate	and	experiment	at	Optimizely,	and	how	we	
determine	the	success	of	our	product	and	feature	launches.	

The	Iron	Chef	competition	requires	the	contestant	to	build	a	masterful	course	using	a	surprise	ingredient.	
The	 first	 thing	 they	 are	 judged	 on	 is	 did	 they	 execute	 creating	 their	 dishes	 using	 this	mystery	 recipe?	How	
successful	did	the	chef	successfully	accomplish	their	recipe?	This	is	very	similar	to	our	question,	“Did	we	build	
the	right	product?”	Second,	the	chef’s	creations	are	judged	on	taste.	Does	their	dish	please	the	taste	buds	and	
do	 you	 want	 to	 eat	 more?	 For	 every	 product	 we	 build,	 we	 ask	 ourselves	 at	 Optimizely,	 “Did	 we	 build	 the	
product	 right?”	 Finally	 the	 last	 component	 the	 judges	 look	 for	 is	 appearance.	 Does	 the	 dish	 created	 look	
pleasing	to	the	eye	and	appetizing?	For	every	product	we	release	here,	we	ask,	“Did	we	get	our	customers	to	
use	our	product?”	

By	 using	 different	 experimentation	 techniques	 throughout	 the	 software	 development	 lifecycle	 from	 idea	
and	discovery	through	to	development	and	launch,	we	want	to	be	confident	that	the	“dishes”	we	serve	to	our	
users	 are	 not	 just	 culinary	masterpieces	 that	 are	 beautiful,	 but	 also	 something	 that	 will	 utterly	 delight	 our	
users.	

2. BACKGROUND	

Optimizely	 was	 formed	 in	 2010	 having	 completed	 a	 successful	 Y	 Combinator	 startup	 program.	 Optimizely	
offered	easy	setup	for	A/B	testing.	Simply	by	inserting	a	single	line	of	JavaScript,	someone	could	start	running	
A/B	tests	on	 their	website.	By	2013,	having	grown	to	approximately	 twenty	engineers,	product	delivery	had	
stalled	due	 to	 increased	communication	bandwidth	and	 too	much	work	 in	 flight.	 In	2014,	 the	 teams	 learned	
about	Scrum	to	improve	product	delivery	and	brought	on	Keith	Nottonson	to	help	them	on	their	agile	journey.	

By	 the	 close	of	2015,	 the	product,	 design	and	engineering	 teams	had	been	 running	 two-week	 sprints	 for	
eighteen	months,	 greatly	 improving	product	delivery	but	 still	 something	was	off.	Though	we	had	solved	our	
original	problem	of	product	velocity,	people	were	beginning	to	tire	of	the	sprints	themselves.	We	experienced	
local	optimization	as	 teams	were	working	off	 their	own	backlog,	often	on	work	 that	was	 lower	priority	 than	
items	on	other	teams’	backlogs.	Sprint	reviews	were	poorly	attended	and	retrospectives	had	become	a	chore.	
We	were	not	 innovating	enough	and	 there	was	not	 enough	 time	 spent	on	discovery,	 customer	development	
and	prototyping.	Something	needed	to	change.	

Delighting	our	Customers:	Innovation	and	Experimentation	at	Optimizely	Page	-	2	

At	the	end	of	2015,	Marty	Cagan	came	and	did	a	workshop	with	Optimizely	where	we	learned	about	dual-
track	Scrum.	From	 there,	we	proceeded	 to	 create	 a	discovery	Kanban	 system.	As	described	at	Agile	2019	 in	
Enterprise	Service	Planning	at	Optimizely	[1],	we	eventually	combined	the	discovery	system	with	our	delivery	
system	to	create	an	end-to-end	customer	Kanban.		

Now	 in	 2020,	 we	 have	 more	 than	 a	 dozen	 teams	 working	 on	 ideas	 that	 flow	 through	 this	 end-to-end	
process,	and	we	use	innovation	and	experimentation	throughout	our	product	development	process.	

3. INNOVATION	AT	OPTIMIZELY	

We	 continually	 strive	 to	 build	 a	 culture	 that	 enables	 us	 to	 build	 revolutionary	 new	 things	 and	 not	 just	
evolutionary	improvements.	To	that	end,	we	nurture	innovation	in	a	variety	of	ways	at	Optimizely.	The	theory	
behind	our	innovation	model	is	based	on	Geoffrey	Moore’s	Using	Innovation	to	Thrive	and	Strive	[2].	Geoffrey	
Moore	writes	 “[t]he	 idea	behind	 the	model	 is	 that	 established	enterprises	 embracing	disruptive	 innovations	
need	 to	 organize	 around	 four	 zones,	 each	with	 its	 own	operating	model,	 each	with	well	 defined	APIs	 to	 the	
other	 three	 zones.”	 Many	 people	 focus	 on	 innovation	 that	 is	 disruptive,	 like	 the	 creation	 of	 a	 wholly	 new	
product	or	business	model,	which	typically	takes	place	in	what	Geoffrey	Moore	calls	the	Incubation	Zone.	“This	
is	where	all	the	futuristic	initiatives	live,	ones	that	are	not	expected	to	pay	back	in	any	foreseeable	future,	but	
which	are	intended	to	create	options	to	participate	in	the	next-generation	disruptive	innovations.”	

However,	there	are	other	types	of	innovation,	including	performance	and	productivity	innovations	that	take	
place	in	the	other	quadrants,	and	we	encourage	these	types	of	innovation	as	well	as	disruptive	ones.	One	way	
we	encourage	all	the	different	types	of	innovation	is	with	our	twice-yearly	hackathons.	

Hackathons	 are	 organized	 time	 boxes,	 typically	 one	 day	 to	 one	 week,	 where	 people	 can	 explore	 ideas	
outside	of	their	daily	work	streams.	Upon	joining	Optimizely,	Keith	Nottonson	became	the	facilitator	and	host	
of	 the	 hackathons	with	 Dae-Ho	 Chung	 now	 leading	 them.	Hackathons	 are	 a	 good	 opportunity	 for	 people	 to	
build	 out	 ideas	 in	 code,	 learn	 a	 new	 skill,	 or	 investigate	 a	 new	 solution,	 architecture	 or	 language.	 Not	 all	
innovation	 is	 product	 based.	 Engineering	 practices	 have	 also	 evolved	 out	 of	 hackathons,	 including	 our	
increasing	use	of	paired	programming	and	our	engineering	blog.	We	have	had	hack	weeks,	hack	days,	and	even	
a	hack	sprint.	[3]		

For	the	last	several	years,	we	have	been	running	two	hack	weeks	a	year:	one	in	the	winter	and	one	in	the	
summer.	These	have	consistently	led	to	30-plus	hack	presentations	of	which	half	a	dozen	in	their	original	form	
usually	make	it	to	production,	often	in	the	form	of	productivity	and	performance	innovations.	Over	the	half	a	
decade,	dozens	of	hacks	have	become	roadmap	backlog	 items	and	been	delivered	 to	our	customers..	We	call	
this	post-hack	week	phase	of	our	process	“Pursuing”	and	all	the	hacks	are	tracked	as	a	program	to	make	sure	
we	do	not	waste	an	opportunity.		

However,	 we	 also	 needed	 a	 way	 for	 the	 organization	 to	 allocate	 some	 dedicated	 time	 to	 exploring	 new	
markets	and	ideas.	We	accomplished	this	with	our	Horizon	3	process,	which	seeks	to	allocate	upwards	of	10%	
of	our	overall	capacity	to	exploring	new	things.	

The	head	of	product	along	with	our	product	and	engineering	leadership	select	several	ideas	from	the	pool	
of	 ideas,	 and	 equip	 the	 idea	 with	 a	 product	 manager,	 a	 product	 designer	 and	 an	 engineer,	 who	 spend	
approximately	50%	of	their	time	on	exploring	this	idea	for	at	least	one	month.	Some	of	these	ideas	may	be	wide	
open	like	omni	channel	or	machine	learning	or	more	specific	 like	solving	for	single	page	applications	for	our	
customers.	

Once	 you’ve	 tested	 some	 ideas	 and	 answered	 some	 questions,	 there	 will	 be	 a	 Persevere,	 Pivot,	 or	 Kill	
decision.	[4]	This	is	a	monthly	check	in	with	the	product	and	engineering	leaders	where	the	team	reviews	the	
questions	 and	 hypotheses	 they	 set	 out	 to	 answer,	 and	what	 they	 learned	 from	 them.	 Each	 team	may	 use	 a	
different	tactic	each	month	to	learn	what	it	can	about	the	selected	idea.	Finally,	they	make	a	recommendation	
for	how	to	proceed	with	this	idea.	After	reviewing	all	the	ideas	each	month,	the	head	of	product	along	with	the	
product	and	engineering	leaders	decide	how	each	idea	should	proceed,	if	at	all,	for	the	next	month.		

Though	we	may	not	always	attain	 this	percentage	of	 time,	 some	of	 the	style	and	patterns	 learned	during	
these	Horizon	3	cycles	stay	with	the	team,	including	‘out	of	the	box’	meetings	where	a	team	will	spend	an	hour	
every	week	or	sprint,	 thinking	about	things	not	 in	their	day	to	day.	And	then	there	are	the	twice	yearly	hack	
weeks	where	they	can	take	their	idea	further	if	they	choose.	

Delighting	our	Customers:	Innovation	and	Experimentation	at	Optimizely	Page	-	3	

4. EXPERIMENTATION	DURING	DISCOVERY	

Jeff	Zych,	 former	Head	of	Design	at	Optimizely	wrote,	 “In	 the	Discovery	phase,	 the	goal	 is	 to	understand	and	
solve	 our	 customer’s	 problems.	 The	 output	 is	 finished	 designs	 that	 solve	 for	 all	 use	 cases.”	 [5]	 As	 ideas,	
including	ones	from	hack	week	and	Horizon	3,	flow	through	the	discovery	process,	we	talk	with	our	users.	We	
seek	out	 the	 right	 people	 to	 speak	with	by	 running	painted	door	 tests	 and	we	 also	 can	use	butter	 bars	 and	
surveys	to	find	appropriate	users	and	conduct	research.	

Another	 way	 to	 experiment	 during	 the	 discovery	 process	 is	 to	 look	 for	 small	 wins	 and	 small,	 testable	
hypotheses.	Don’t	spend	months	building	a	prototype	and	try	to	boil	the	ocean	and	make	everything	work.	Find	
ways	of	“faking”	the	experience	or	technology	to	rapidly	prototype	ideas.	Aim	to	prototype	and	test	an	idea	in	
1-2	weeks.	For	example,	at	Optimizely,	we	often	create	a	frontend	experience	that	mocks	certain	functionality	
using	JavaScript.	This	isn’t	a	fully	built	product,	but	may	mock	a	certain	workflow	that	our	customers	may	be	
interested	in.	We	can	get	this	built	pretty	quickly	and	out	facing	our	customers	within	the	workday.	We	track	
the	usage	metrics	and	conversions	to	determine	if	our	customers	are	 interacting	with	our	prototype	in	ways	
we	 thought	 they	would.	 If	 they	don’t,	we	can	 rapidly	 change	parts	 to	determine	what	was	working	vs.	what	
does	not.	This	helps	us	 to	quickly	 iterate	 the	 right	 functionality	by	backing	what	we	built	with	 actual	 usage	
metrics.		

	

	
Figure	1.	Horizon	3	Innovation	Cycle	as	tracked	on	the	Wall	of	Work	May	2018	(Photo	Keith	Nottonson)	

5. EXPERIMENTATION	DURING	DEVELOPMENT	

Experimenting	during	development	 can	help	 ensure	 you	 are	building	 the	product	 right.	 Two	 indicators	 that	
Optimizely	uses	are	velocity	(can	we	ship	code	faster?)	while	maintaining	high	quality	(happy	customers).	By	
using	 Feature	 Flags,	 also	 known	 as	 Feature	 Toggles,	 Optimizely	 has	 implemented	 feature	 testing	 (does	 this	
work	better/faster?),	feature	gating	(do	the	right	people	see	this?),	rolling	out	in	stages	(does	this	scale?)	and	
safe	rollbacks	(can	I	recover	quickly?).	These	all	ensure	that	our	code	gets	shipped	fast	and	our	quality	control	
stays	high.		

Delighting	our	Customers:	Innovation	and	Experimentation	at	Optimizely	Page	-	4	

Feature	testing	allows	us	to	run	an	A/B/n	experiment	on	implementations	of	our	features	and	allows	us	to	
validate	 that	 the	 implementation	we	 end	 up	 shipping	 is	 indeed	 the	 best	 or	 fastest.	We	 accomplish	 Feature	
Testing	by	using	Feature	Variables	in	Optimizely	Full	Stack.	For	each	individual	feature	that	we	are	testing,	we	
can	 code	 different	 behaviors	 behind	 parameters.	 These	 parameters	 are	 modified	 by	 the	 feature	 flag.	 This	
allows	us	to	test	different	values	for	these	parameters	without	having	to	go	back	and	change	code	(this	makes	
feature	testing	extremely	fast	since	we	didn’t	need	to	have	multiple	builds	with	different	code).	For	example,	
Optimizely	 ran	 a	 Feature	 Test	 in	 development	 against	 its	 Stats	 Accelerator	 algorithm.	 With	 any	 machine	
learning	model,	 in	order	to	get	the	most	benefit	you	need	to	tune	the	hyper-parameters	which	control	things	
like	how	quickly	 traffic	 is	 pushed	 to	 each	variation	 and	how	 to	handle	 fluctuating	 conversion	 rates.	 For	our	
variations	 in	 this	 feature	 test	we	 tested	an	aggressive	variation	(aggression	value	higher)	vs.	a	more	passive	
variation	(aggression	value	lower).	We	found	that	our	aggressive	variation	was	statistically	significantly	faster	
than	the	passive	variation	which	gives	us	high	confidence	this	is	the	best	implementation.		

Feature	 Flagging	 allows	 us	 to	mitigate	 development	 risk	 by	 allowing	 us	 to	 test	 in	 production	 safely	 and	
quickly.	 Every	week	we	deploy	 code	 at	 a	 certain	 cadence	 per	week.	Developers	 do	not	 have	 to	wait	 for	 the	
entire	feature	to	be	completed	before	they	ship	to	production,	since	they	can	hide	their	incomplete	code	behind	
a	feature	flag.	Once	the	feature	is	complete,	our	developers	turn	on	the	code	only	to	a	select	group	of	audiences.	
For	our	Stats	Accelerator	project,	we	turned	on	this	feature	in	production	to	our	quality	engineering	(QE)	team	
initially.	This	allowed	for	the	QE	team	to	test	our	features	in	the	actual	production	environment	in	which	our	
customers	 are	 using	 them.	 Then,	 we	 turned	 on	 Stats	 Accelerator	 to	 a	 select	 group	 of	 beta	 customers.	 This	
allows	 us	 to	 quickly	 get	 feedback	 and	 allows	 us	 to	 make	 fixes	 without	 exposing	 issues	 to	 the	 rest	 of	 our	
customers.	

Rollout	in	stages	allows	us	to	slowly	introduce	a	feature	to	our	customers	by	selecting	what	percent	of	our	
customer	traffic	will	have	access	to	our	new	features.	Since	the	code	is	already	deployed,	we	can	adjust	more	or	
less	 traffic	 depending	 on	 what	 we	 are	 monitoring	 (error	 rates	 or	 performance).	 This	 allows	 us	 to	 quickly	
validate	 engineering	 quality	 and	 our	 backend	 infrastructure’s	 ability	 to	 scale	 and	 support	 the	 load.	 For	 our	
Stats	 Accelerator	 project	we	 rolled	 out	 this	 feature	 to	 initially	 20%	 of	 our	 customer	 base.	 After	 a	week	we	
validate	that	our	infrastructure	could	handle	the	increase	in	traffic	and	computation	requirements,	and	that	no	
major	 issue	was	 reported.	We	 then	 rolled	 out	 to	 50%	 /80%/100%	with	 this	 process	 ensuring	 that	 the	 full	
deployment	was	seamless.	

Even	though	our	Stats	Accelerator	example	was	deployed	without	issues,	we	could	have	quickly	mitigated	
any	 issues	 through	a	 roll	back.	Rolling	back	 the	 code	 is	 a	 simple	on/off	 switch	where	we	can	deactivate	 the	
wayward	 feature.	This	significantly	speeds	up	your	Mean	Time	to	Resolve.	Without	a	 feature	 flag,	a	bug	 that	
caused	an	incident	would	require	teams	to	come	together,	sort	through	the	entire	deploy	to	find	what	caused	
the	 issue,	debate	over	rolling	back	or	 fixing	 forward,	and	then	redeploy	the	build	with	the	 fix.	Since	 features	
released	behind	feature	flags	are	independent	of	build	changes,	we	know	pretty	quickly	when	a	feature	flag	is	
the	culprit	behind	the	incident.	By	turning	off	the	flag,	the	offending	feature	is	immediately	rolled	back	without	
having	to	redeploy	any	code.	By	using	a	feature	rollback,	Optimizely’s	average	Mean	Time	To	Resolve	Incidents	
due	to	a	new	feature	has	dropped	by	over	~84%	(Average	hotfix	time	in	2019:	~	2	hrs,	Average	rollback	time:	
~20	min).	

6. EXPERIMENTATION	AFTER	LAUNCH	

We	have	used	experimentation	to	make	sure	that	the	product	we	built	is	something	our	customers	truly	want.	
We	have	used	experimentation	 throughout	development	 to	prove	 that	our	product	 is	working	correctly.	We	
have	now	confidently	launched	our	product.	However,	the	work	is	still	not	done.	There	are	two	big	needs	left	to	
address:	

• How	do	we	measure	the	business	impact	so	we	can	adjust	our	product	iteratively;	and	
• How	do	we	drive	more	adoption	of	our	product	so	more	customers	use	it?		

	
Upon	 launch	 of	 our	 product,	 we	 seed	 certain	 events	 that	 we	 track	 in	 our	 new	 product.	 For	 our	 Stats	

Accelerator	(SA)	experiment,	we	 tracked	how	many	customers	started	a	new	SA	experiment,	and	how	many	
customers	actually	had	an	SA	experiment	reach	statistical	significance.	These	events	give	us	indicators	which	
we	can	measure	 regarding	how	many	customers	adopted	our	new	product	 (started),	 and	 if	 customers	were	
understanding	the	use	case	that	our	solution	presented	(reached	statistical	significance).		

What	we	find	occasionally	is	the	products	we	launch	may	require	more	hand	holding	to	understand	the	full	
potential	of	usage.	Here,	we	can	run	a	few	experiments	regarding	help	texts,	starter	guides,	or	adoption	guides.	

Delighting	our	Customers:	Innovation	and	Experimentation	at	Optimizely	Page	-	5	

We	track	the	usage	or	clicks	of	our	help	texts	or	guides,	and	see	if	they	convert	to	more	usage	of	our	product.	If	
they	do,	our	experiment	is	successful	and	we	have	driven	more	business	impact	for	our	new	product.	If	they	do	
not,	we	make	adjustments,	and	run	a	new	experiment.	Iteratively	we	continue	until	we	find	the	right	solution	
to	bring	us	more	lift.	

For	 the	 question	 regarding	 how	do	we	 drive	more	 adoption	 and	 customer	 usage,	we	 often	 run	 targeted	
campaigns	 against	 a	 targeted	market.	 For	 our	 SA	 example,	we	 chose	 to	 run	 a	 Personalization	 campaign	 for	
accounts	that	have	A/B	Test	but	not	SA	enabled	to	drive	upsell.	We	used	a	Personalization	campaign	that	had	
messaging	 around	 how	we	 could	 help	 our	 customers	 reach	 statistical	 significance	 faster	 using	 our	 new	 SA	
product,	and	links	to	try	it	free.	We	measured	against	conversions	to	see	how	many	customers	contacted	us	for	
free	trials,	and	adjusted	our	experiments	to	see	if	we	could	drive	higher	signups.	

Using	experimentation	in	our	launch	stages	put	the	final	touches	on	your	end	product.	It	ensures	that	you	
are	 really	 getting	 the	 usage	 you	 expect	 your	 customers	 to	 get,	 and	 it	 allows	 you	 to	 figure	 out	 how	 to	 drive	
higher	adoption.	

7. WHAT	WE	LEARNED	

Using	an	experiment-driven	product	development	cycle	helps	identify	and	create	better	value	earlier	and	more	
often.	 As	 Whelan	 Boyd	 writes	 “	 Leveraging	 experimentation	 in	 each	 of	 the	 four	 steps	 can	 help	 you	 avoid	
building	the	wrong	product	and	building	the	product	wrong.”	[6]	

	

	
	

Figure	2.	Experimentation	across	entire	digital	product	lifecycle	by	Whelan	Boyd	

Building	 this	culture	of	experimentation	 to	drive	 innovation	at	Optimizely,	we	have	discovered	a	 few	key	
concepts	that	we	are	still	driving	to	improve.	We	also	learned	that	experimentation	must	be	done	at	every	level	
in	the	company.	From	the	product	team	building	the	roadmap	which	flows	to	the	engineering	team	building	the	
product	to	the	marketing	team	trying	to	help	customers	find	and	use	the	product.	

At	 the	 product	 level,	 the	most	 important	 lesson	was	 to	 show	ROI.	 This	 helps	 tie	 business	 impact	 to	 the	
experiments	run.	By	having	a	good	ROI	model,	it	is	immediately	apparent	the	more	experiments	run,	the	more	
business	gains.		

At	the	engineering	level,	we	aggressively	dog	food	our	own	product	(the	practice	of	an	organization	using	
its	own	product	to	test	its	validity).	A	lot	of	what	we	learned	during	our	experimentation	resulted	in	changes	in	
features	or	best	practices.	We	found	in	order	to	properly	implement	a	platform	(feature	management	system)	
that	allows	us	to	experiment	in	all	stages,	we	needed	to	establish	proper	governance.		

Delighting	our	Customers:	Innovation	and	Experimentation	at	Optimizely	Page	-	6	

If	the	experimentation	program	was	an	airport,	and	our	feature	flags	were	airplanes,	then	we	needed	an	air	
control	 tower	 (governance	 program)	 to	 properly	 orchestrate	 all	 the	 moving	 parts	 and	 to	 ensure	 the	 final	
product	 didn’t	 end	 up	 in	 a	 fiery	mess.	 This	 governance	 program	was	 a	mix	 of	 policy,	 process,	 and	 smarter	
automation.	Things	 like	how	long	a	feature	flag	should	 live	 in	your	code,	or	what	risk	profiles	do	we	need	to	
assign	to	certain	flag	types	were	created	and	processes	such	as	feature	flag	removal	or	run	books	were	enacted.	
We	 also	 built	 and	 shipped	 features	 to	 aid	 in	 this	 process	 such	 as	 our	 Jira	 integration	with	 Optimizely.	 This	
allowed	us	to	internally	automate	things	such	as	automatically	creating	a	feature	flag	through	Jira.	

Finally,	 have	 the	 right	 experiment	 champions	 lead	 and	 be	 in	 charge	 of	 coaching	 the	 experimentation	
process.	Your	champion	should	be	helping	teams	across	domains	to	set	up	the	right	programs	and	process.	No	
team’s	 experimentation	 program	 or	 process	 will	 be	 identical	 to	 another,	 which	 is	 why	 the	 right	metrics	 to	
measure	 and	 define	 success	 needs	 to	 be	 clearly	 measured	 and	 tracked.	 At	 Optimizely,	 we	 had	 a	 technical	
program	manager	 that	 organized	 our	 experimentation	 program	 and	 measured	 the	 velocity	 of	 experiments	
created,	and	fostered	best	practices	and	aides	to	run	them.	Your	experiment	champions	need	to	put	in	place	the	
right	governance	process	to	ensure	that	the	mechanics	of	running	experimentation	across	the	product	life	cycle	
is	repeatable.	Creating	a	bespoke	experiment	campaign	per	each	feature	will	lead	to	low	engagement	over	time.	
Having	set	standards	and	ways	to	enforce	and	guide	them	will	make	your	experiment	process	more	repeatable	
and	successful.	

8. ACKNOWLEDGEMENTS	

We	would	like	to	thank	Rebecca	Wirfs-Brock	and	Frank	Olsen	for	their	patience,	support	and	encouragement.	
We	would	also	like	to	thank	all	our	fellow	Optinauts,	past	and	present,	who	have	gone	on	this	journey	with	us.	
In	particular,	Whelan	Boyd’s	article,	“How	to	Avoid	Building	the	Wrong	Product?	Make	Your	Product	Roadmap	
Your	 Experimentation	 Roadmap,”	 and	 Asa	 Scahchar’s	 Product	 Tank	 presentation,	 "Experiment	 Led	 Product	
Management”	were	extremely	informative.”	
REFERENCES		
[1]	Keith	Nottonson,	https://www.agilealliance.org/resources/experience-reports/enterprise-service-planning-at-optimizely/	
[2]	Geoffrey	Moore,	https://www.slideshare.net/sasindia/keynote-geoffrey-mooreusinginnovationtothriveandstrive	
[3]	Agile	Rock,	https://medium.com/engineers-optimizely/why-we-make-time-to-hack-bc3697c47d0	
[4]	David	Bland,	https://medium.com/@davidjbland/spruce-the-corporate-minimum-viable-product-fc251dc1a424	
[5]	Jeff	Zych,	https://jlzych.com/2016/07/17/discovery-kanban-at-optimizely/	
[6]	 Whelan	 Boyd,	 https://medium.com/product-experimentation/how-to-avoid-building-the-wrong-product-make-your-product-
roadmap-your-experimentation-roadmap-a2847babfeee	
	
	

