
 

	
Author's	address:	Dane	Weber,	2300	Wilson	Blvd.,	Arlington,	VA;	email:	dane.weber@excella.com,	Twitter:	@daneweber	
Copyright	2019	is	held	by	the	author.	

Undercover	Scrum	Master	
DANE	WEBER,	Excella	

I	hit	a	wall	coaching	a	team	that	did	not	want	to	try	popular	Agile	engineering	techniques	such	as	Test-Driven	Development	(TDD)	and	pair	
programming.	I	became	a	Scrum	Master	after	working	on	the	business	analysis	and	account	ownership	side	of	software	development	and	
could	 not	 speak	 from	 personal	 experience	 about	 engineering	 practices.	 In	 order	 to	 get	 some	 first-hand	 experience	 and	 to	 gain	 a	 new	
perspective,	I	chose	to	spend	a	couple	years	as	a	software	developer	on	a	Scrum	team.	I	learned	more	than	I	expected.	

1. INTRODUCTION	

Scrum	Masters,	Product	Owners,	and	others	who	work	closely	with	software	development	teams	often	seem	
unaware	 of	 the	 experience	 of	 the	 technology-focused	 people	 on	 the	 team.	 I	 became	 a	 Scrum	 Master	 for	
software	development	 teams	without	ever	having	been	a	software	developer	myself.	While	not	necessarily	a	
problem,	I	wanted	to	coach	my	team	on	technical	practices,	but	had	little	confidence	because	I	could	not	draw	
from	personal	experience.	In	addition,	while	I	had	other	roles	prior	to	discovering	the	Agile	world,	I	served	as	
the	Scrum	Master	every	time	I	worked	with	an	Agile	team.	I	switched	roles	from	Scrum	Master	to	developer,	
hoping	 to	 gain	 first-hand	 experience	 with	 Agile	 engineering	 and	 technical	 practices,	 but	 ended	 up	 learning	
more	important	lessons	about	the	work-life	of	software	developers.	

2. BACKGROUND	

Coaching	a	team	as	a	Scrum	Master	feels	like	a	great	fit	for	me	and	is	something	I	believe	in.	While	every	Scrum	
Master	I’ve	met	seems	to	have	a	different	background,	the	role	felt	 like	it	was	tailored	to	me,	drawing	on	my	
history	and	interests.	When	I	discovered	the	role,	I	loved	it	and	felt	at	home.	While	my	perspective	changed	as	a	
software	developer,	I	brought	the	Scrum	Master	lens	to	the	experience.	

I’m	drawn	to	understanding	larger	systems	and	how	the	elements	fit	in	and	influence	each	other.	I	studied	
philosophy	in	college	and	clinical	psychology	in	grad	school.	Both	of	these,	for	me,	were	about	understanding	
and	wanting	to	make	things	better.	 I	also	enjoy	creating	games	and	game	worlds	where	I	 like	understanding	
how	the	rules	balance	and	play	off	of	each	other,	shaping	the	whole	system.	

I	really	want	to	help	people	live	happier	lives.	I	left	clinical	psychology	not	because	of	the	work	of	therapy,	
which	 I	 loved,	 but	 because	 the	 subject	 matter	 of	 human	 dysfunction	 drained	 me.	 I	 landed	 in	 the	 world	 of	
bespoke	software	for	the	US	government	and	enjoyed	learning	and	assisting	however	I	could.	I	happily	helped	
with	 tech	 support,	 analysis,	 testing,	 account	 management,	 and	 project	 management.	 I	 enjoyed	 helping	
coworkers	and	the	users	of	our	software.	

Wasteful	and	especially	harmful	processes	or	policies	rile	me	up.	Regardless	of	my	role,	 I	got	 involved	 in	
reworking	or	abolishing	bad	processes	as	well	as	bypassing	bureaucracy	and	finding	ways	to	talk	directly	with	
people.	When	 I	 took	Scrum	Master	 training	 it	 just	made	sense	and	 felt	 like	 fresh	air.	The	 ideas	and	material	
emboldened	me	to	propose	more	dramatic	changes.	I	became	one	of	the	champions	for	Agile	approaches	on	my	
large	project.	While	it	was	only	one	of	my	responsibilities,	I	took	the	role	of	Scrum	Master	seriously	and	later	
found	an	opportunity	to	serve	as	a	Scrum	Master	full-time.	

My	job	was	made	easier	throughout	because	of	my	comfort	with	computers	and	the	programming	I	did	to	
automate	my	tasks.	While	I	used	my	ability	to	code	in	my	job	for	trouble-shooting,	batch	processing,	and	task	
automation,	it	was	never	among	my	explicit	responsibilities.	I	understood	and	still	believe	that	working	on	an	
enterprise	code-base	with	a	team	of	developers	involves	a	lot	more	than	just	getting	things	to	work.	

My	 focus	as	a	Scrum	Master	shifted	over	 time	while	working	with	 teams	on	the	myUSCIS	project.	 I	 spent	
increasing	 amounts	 of	 time	 on	 coaching	 the	 larger	 organization	 and	 wishing	 I	 could	 coach	 on	 technical	
practices.	The	Large-Scale	Scrum	(LeSS)	 framework	has	a	chart	of	Scrum	Master	 focus	over	 time	(Larman	&	
Vodde)	that	rings	true	for	me.	Coaching	the	Product	Owner	and	the	development	team	start	off	as	major	focus	



Undercover	Scrum	Master:	Page	-	2	
 

areas	but	drop	over	time	as	they	come	to	understand	and	embrace	their	roles.	Coaching	the	larger	organization	
takes	significant	effort	up	front	to	get	permission	and	buy-in	for	the	team.	After	clearing	that	hurdle,	coaching	
the	organization	is	a	minimal	focus,	but	grows	over	time	since	many	of	the	impediments	faced	by	the	team	are	
out	of	their	control	and	the	Scrum	Master	spends	time	addressing	them.	The	other	area	of	focus	is	coaching	the	
team	on	technical	practices,	which	starts	out	being	the	inherited	practices,	but	over	time	should	become	one	of	
the	Scrum	Master’s	primary	focuses.	

This	matched	my	experience	where,	over	time,	my	development	team	and	Product	Owner	were	performing	
quite	well.	The	team	integrated	code	frequently,	running	it	through	an	automated	test	suite,	and	deploying	it	to	
test	 and	 production	 environments	 via	 automated	 pipelines.	 Product	 Backlog	 Items	 (PBIs)	 were	 split	 fairly	
small	 and	 the	 team	 delivered	 high	 quality	 work	 that	 provided	 significant	 value	 every	 iteration.	 I	 began	
spending	most	of	my	time	addressing	larger	organizational	matters	for	the	sake	of	my	team.	

I	did,	however,	see	room	for	improvement	in	the	team’s	technical	practices.	For	example,	reproducing	and	
prioritizing	 escaped	 defects	 was	 time-consuming	 and	 frustrating,	 especially	 when	 a	 defect	 was	 a	 repeat	 (a	
regression).	I	observed	the	team	writing	tests	at	the	end	of	a	PBI’s	implementation,	and	also	knew	of	examples	
where	 no	 new	 automated	 test	 was	 added	 when	 fixing	 a	 bug.	 In	 my	 mind,	 adopting	 the	 Test-Driven	
Development	 (TDD)	 approach	 would	 ensure	 higher-quality	 tests	 with	 greater	 coverage,	 both	 for	 regular	
development	 as	 well	 as	 when	 fixing	 escaped	 defects.	 My	 proposals	 to	 experiment	 with	 TDD	 fell	 flat	 for	 a	
number	of	reasons,	including	poor	past	experiences	with	it	among	my	team.	I	had	no	history	with	TDD	that	I	
could	use	to	motivate	my	team	to	try	it.	

Similarly,	while	the	team	was	good	at	dividing	a	PBI	into	tasks,	these	tasks	were	usually	worked	by	a	single	
person,	and	any	unforeseen	absence	would	put	the	task	and	likely	the	PBI	on	hold.	While	“pairing”	(referring	to	
“pair	 programming”)	 was	 welcome	 among	 the	 team,	 it	 usually	 meant	 dividing	 up	 tasks	 or	 consulting	 with	
another	 team	member.	 As	 a	 Scrum	Master,	 I	 imagined	 that	 pair	 programming	 (with	 one	 computer	 and	 two	
developers	 switching	 off	 frequently)	 would	 reduce	 our	 work	 in	 progress,	 increase	 resiliency	 to	 absences,	
improve	code	quality,	and	possibly	even	increase	the	rate	of	PBI	completion.	This	was	an	unpopular	suggestion	
met	with	skepticism	and	objections	from	the	team’s	past	experience.	

I	felt	frustrated	by	my	inability	to	champion	these	technical	practices	and	wanted	to	learn	first-hand	if	these	
and	other	Agile	engineering	practices	could	be	successful.	With	the	support	of	my	firm,	I	took	a	month	to	ramp	
up	on	the	Ruby	programming	 language	and	the	Rails	 framework	in	order	to	 join	a	different	project	as	a	 full-
time	software	developer.	

I	 joined	a	project	modernizing	 the	E-Verify	 system	 for	 the	 federal	 government.	The	 team	had	been	quite	
successful	over	the	prior	two	years,	and	this	success	led	to	requests	to	modernize	more	and	bigger	parts	of	the	
E-Verify	system.	The	project	added	staff	in	order	to	meet	these	increasing	requests	and	split	into	two	teams.	I	
joined	 just	as	 the	project	grew	again	and	was	reorganized	 into	 three	teams.	The	structure	 followed	the	LeSS	
model	with	a	single	Product	Owner	and	product	backlog	across	the	teams,	but	each	team	had	its	own	Scrum	
Master	and	sprint	backlog.	Each	team	was	cross-functional	and	expected	to	be	able	to	address	any	story	added	
to	 the	 sprint.	 The	 team	 divisions	 had	 been	 decided	 before	 I	 joined,	 but	 I	 joined	 the	 project	 before	 the	 new	
division	took	effect,	so	I	was	a	founding	member	of	the	team.	

In	 addition	 to	 a	 Scrum	 Master,	 the	 team	 I	 joined	 included	 a	 business	 analyst	 with	 extensive	 domain	
knowledge,	 a	 fully-remote	 DevOps	 specialist,	 a	 fully-remote	 senior	 developer,	 and	 three	 other	 on-site	
developers,	making	a	team	of	eight.	Project	tenure	ranged	with	half	of	the	team	having	been	on	the	project	over	
a	year	and	the	other	half	having	joined	in	the	preceding	months	during	the	expansion.	

3. UNDERCOVER SCRUM MASTER ON AN AGILE DEVELOPMENT TEAM	

My	new	team	spent	some	time	forming	and	establishing	norms,	including	choosing	a	name	(“Bits,	Please!”)	and	
team	 values:	 Thorough,	 Joyful,	 Helpful,	 Trustworthy,	 &	 Respectful.	 Because	 this	 was	 an	 ongoing	 project,	
however,	we	started	day	one	with	a	set	of	items	in	our	team’s	sprint	backlog	and	dove	directly	into	the	work.	
While	 I	 focus	 here	 on	 things	 that	 were	 problematic	 in	 one	 way	 or	 another,	 the	 team	 was	 exemplary	 with	
excellent	 value-delivery	 and	 technical	 practices.	 My	 overall	 experience	 was	 truly	 wonderful,	 and	 I	 was	
impressed	with	everyone	I	worked	with	on	the	project.		

3.1 Cognitive	Load	
It	struck	me	early	on	and	throughout	my	two	years	just	how	much	there	is	to	know	and	master	as	a	developer	
and	 team	 member.	 This	 creates	 a	 cognitive	 load	 that	 plays	 a	 significant	 role	 in	 affecting	 attitudes	 and	
motivations	in	ways	that	were	not	obvious	to	me	as	a	Scrum	Master,	but	which	will	be	a	major	consideration	



Undercover	Scrum	Master:	Page	-	3	
 

when	 I	 coach	 teams	 in	 the	 future.	The	sheer	number	of	different	 tools,	 technologies,	 systems,	and	processes	
that	were	required	to	do	my	job	required	significant	mental	energy.	This	cognitive	load	was	tiring,	even	though	
I	enjoyed	the	work.	Every	tool	and	technology	I	interacted	with	had	its	own	interface,	rules,	and	quirks.	While	
these	may	make	sense	and	become	familiar	over	time,	they	require	memory	and	thinking	to	apply.	

Just	to	get	to	the	point	of	making	my	first	change	to	the	codebase	required	layers	upon	layers	of	tools	and	
technology.	 I	was	 issued	an	unfamiliar	Macintosh	 for	 the	project	with	a	VPN	setup	that	required	more	effort	
than	it	should	have.	Cloning	the	code	repository	required	a	GitHub	account	and	using	Bash	and	Git.	I	chose	to	
use	VS	Code	for	editing	code,	which	worked	well	for	me	but	still	requires	learning	its	commands	and	features.	

To	 run	 the	 containerized	 application	 required	 using	 Docker,	 Make,	 and	 Rake,	 as	 well	 as	 initializing	 and	
running	 containerized	 Redis,	 Oracle,	 and	 Postgres	 databases.	 Reading	 and	 changing	 the	 application	 code	
involved	Ruby,	Rails,	Javascript,	React,	Redux,	CSS,	Sass,	HTML,	Sequel,	and	even	SQL.	The	automated	tests	used	
various	 testing	 libraries	 and	 frameworks,	 including	 Cucumber,	 JMeter,	 Rswag,	 RSpec,	 Minitest,	 RuboCop,	
ESLint,	Jest,	Codecept,	and	Cypress.	

Once	 the	 code	 change	 was	made	 and	 tested	 locally	 using	 a	 browser,	 Swagger,	 Insomnia,	 or	 Curl,	 a	 pull	
request	had	to	be	created	and	reviewed,	which	was	coordinated	in	Slack.	After	approval	and	merging,	Jenkins	
jobs	would	build	a	new	 image,	 run	 tests,	 and	deploy	 to	various	Amazon	Web	Services	 (AWS)	 infrastructure.	
Monitoring	 and	 troubleshooting	 the	 test	 and	 production	 environments	 involved	 CloudWatch,	 Splunk,	 New	
Relic,	and	Kibana	tools,	each	with	their	own	take	on	query	syntax.	

In	 addition	 to	 the	 above,	 various	parts	 of	 the	 application	 required	understanding	HTTP,	OAuth2,	NGINX,	
regular	expressions,	Flipper,	Graphviz,	Markdown,	AsciiDoc,	Sidekiq,	Elasticsearch,	and	more.	Troubleshooting	
might	require	SSH.	The	AWS	infrastructure	included	ECS,	SQS,	S3,	and	more,	each	of	which	might	be	involved	in	
a	change,	as	well	as	the	government’s	networking	and	the	Akamai	CDN.	

If	 that’s	not	already	overwhelming	enough,	 in	addition	to	Slack,	communication	occurred	via	Outlook	and	
various	different	 video	 conferencing	 solutions.	While	we	preferred	 to	define	 and	visualize	work	on	physical	
boards,	we	also	tracked	it	in	JIRA.	Trello	was	used	for	tracking	other	tasks	and	improvement	efforts.	Incidents	
and	paging	were	done	through	VictorOps	in	addition	to	Service	Now.	These	tools	were	each	used	in	particular	
ways	based	on	the	project’s	and	teams’	working	agreements,	implicit	understanding,	culture,	and	schedule	of	
events.	

While	 each	 of	 these	 tools	 and	 technologies	 solve	 problems	 and	made	 our	 lives	 better,	 they	 took	mental	
energy	to	use	well.	None	of	the	above,	however,	provided	any	business	value	themselves.	What	provided	that	
value	 were	 the	 applications	 themselves	 with	 their	 business	 rules	 and	 connections	 to	 partner	 systems.	
Understanding	 the	behavior	of	 these	systems	and	 the	needs	 they	were	built	 to	address	was	more	 important	
than	anything	else	in	actually	delivering	value	to	the	government	and	their	stakeholders.	

All	of	the	above	is	to	say	that	I	had	very	little	energy	left	to	spend	on	many	of	the	things	that	mattered	far	
more	to	me	as	a	Scrum	Master.	While	I	still	cared	about	making	our	daily	stand-up	effective,	what	was	included	
in	the	Definition	of	Done,	the	format	of	user	stories,	and	how	we	were	improving	flow,	I	would	frequently	reach	
a	point	where	addressing	these	things	felt	draining	and	tiresome.		

As	a	Scrum	Master,	I	had	been	frustrated	when	my	team	would	express	disinterest	or	just	ask	me	to	make	a	
decision	 for	 them,	 saying	 that	 they	would	 be	 fine	with	whatever	 I	 decided.	 Other	 suggestions	 for	 new	 and	
different	ways	of	doing	things	would	be	shot	down	or	fizzle	because	the	team	thought	it	would	take	too	much	
effort.	One	particularly	confusing	piece	of	feedback	I	had	received	as	a	Scrum	Master	was	that	my	retrospective	
event	formats	were	too	varied	and	that	the	team	would	appreciate	a	simple	or	repeated	format.	This	surprised	
me	 because	 I	 prided	 myself	 on	 the	 effort	 I	 put	 into	 bringing	 variety	 and	 novelty	 into	 retrospectives	 and	
imagined	that	anything	less	would	become	boring	and	repetitive.	

My	experience	as	a	software	developer	with	a	heavy	cognitive	load	puts	these	experiences	in	a	new	light.	I	
now	see	that	learning	a	new	retrospective	format,	trying	a	new	process,	and	even	changing	a	team	norm	can	
feel	like	having	to	learn	one	thing	too	many.	Since	the	business	needs,	application,	and	underlying	technology	
all	seem	essential	to	accomplishing	the	job,	anything	that	seems	negotiable	is	the	natural	target	for	freeing	up	
mental	resources.	When	I	put	effort	into	various	experiments	and	process	improvements,	the	experience	was	
more	taxing	and	less	rewarding	than	when	I	did	so	as	a	full-time	Scrum	Master.	For	example,	one	experiment	
I’m	proud	of	was	introducing	an	Apoptotic	Review,	named	after	programmed	cell	death,	where	we	focused	on	
ending	experiments	and	processes.	Even	though	I	 liked	the	activity	and	wanted	it	to	continue,	I	was	eager	to	
hand	 off	 responsibility	 for	 it.	 I	 can	 only	 imagine	 that	 I	 would	 have	 invested	 more	 time	 and	 effort	 into	
shepherding	and	 iterating	on	 the	activity	 if	 I	were	 serving	as	a	Scrum	Master	and	did	not	already	 feel	over-
burdened.	



Undercover	Scrum	Master:	Page	-	4	
 

Taking	 cognitive	 load	 into	 account	 can	 provide	 a	 new	 perspective	 and	 inspire	 strategies	 for	 successful	
improvement	efforts.	Regardless	of	intention,	I	observed	several	things	that	helped	me	as	a	member	of	an	Agile	
team.	

Written	references	that	appeared	alongside	an	activity,	as	opposed	to	hidden	in	a	document	repository	or	
even	wiki,	made	it	far	easier	to	follow	through	on	something	we	agreed	to	as	a	team.	For	example,	we	created	a	
checklist	 that	 automatically	 appeared	 in	 every	 pull	 request,	 reminding	 us	 of	 various	 criteria	 for	work	 being	
“done,”	including	tests,	feature	toggles,	communication	with	other	teams,	and	other	good	practices.	As	our	daily	
stand-ups	evolved,	we	wrote	up	the	format	on	a	poster	that	hung	on	the	wall	where	we	would	gather.	Similar	
posters	were	 created	 for	 recurring	meetings	 to	 remind	us	 of	 the	 format	 or	 agenda.	When	we	 experimented	
with	a	Kanban	flow,	the	column	policies	on	the	physical	board	were	helpful,	while	the	reference	wiki	we	used	
after	switching	to	JIRA	was	largely	ignored.	

The	 project	 culture	 was	 strongly	 egalitarian,	 and	 our	 Agile	 coach	 and	 Scrum	 Masters	 usually	 sought	
consensus	or	at	least	democratic	support	for	changes	or	even	ongoing	efforts.	While	this	was	important	and	far	
better	than	my	past	experiences	of	dictatorial	and	highly	directive	management,	it	also	meant	that	they	were	
often	hesitant	about	reminding	the	team	of	our	norms	or	holding	us	accountable,	 fearful	of	nagging	or	being	
bossy.	 I	 really	 appreciated	 the	 times	 they	 did	 simply	 remind	me	 of	 how	 to	 do	 something,	 such	 as	what	 our	
policy	 is	 for	moving	cards	 to	various	places	on	 the	board.	 In	 fact,	 I	would	have	been	happy	to	have	received	
even	more	direction	and	help	remaining	disciplined.	My	forgetfulness	about	a	given	norm	or	process	was	not	
motivated	 by	 opposition	 to	 it,	 but	 simply	 not	 prioritizing	 it	 above	 all	 the	 other	 things	 I	was	 trying	 to	 keep	
straight	in	my	head.	

One	thing	this	experience	also	confirmed	for	me	was	that	it	can	be	okay	to	spearhead	an	improvement	or	
even	 to	 just	do	something	without	a	 lengthy	discussion	with	 the	whole	 team.	While	 this	 takes	prudence	and	
willingness	to	take	feedback,	I	was	always	happy	as	a	team	member	to	learn	that	someone	had	figured	out	a	
better	way	to	do	something	without	having	to	be	personally	involved	in	the	decision.	I	might	not	agree	that	the	
new	approach	was	better,	but	trying	it	out	without	a	major	investment	of	my	time	was	preferable	to	having	to	
discuss	its	merits	at	length.	

The	project	had	a	great	culture	of	experimentation.	With	non-trivial	experiments,	we	found	that	we	needed	
a	 “lead	 scientist”	 to	 own	 the	 experiment.	 While	 the	 entire	 project	 supported	 experimentation	 and	 thus	
supported	each	experiment	attempted	(even	 if	we	might	be	 individually	skeptical	 that	 the	experiment	was	a	
better	 way	 of	 doing	 things),	 many	 experiments	 would	 be	 tried	 only	 in	 part	 or	 not	 at	 all.	 This	 was	 simply	
because	many	would	forget	they	were	supposed	to	be	doing	things	differently,	such	as	tracking	the	source	of	
reported	 bugs	 or	 throwing	 a	 party	 when	 100	 PBIs	 were	 completed.	 The	 experiment	 owner	 would	 remind	
people	 to	 follow	the	protocol	of	 the	experiment	and	would	make	decisions	 in	 the	moment	on	how	to	handle	
situations	that	were	ambiguous	in	the	original	experiment	definition,	such	as	how	to	categorize	a	given	bug	or	
whether	 abandoned	 PBIs	 counted	 toward	 the	 goal.	 Successful	 experimentation,	 meaning	 that	 we	 tried	 an	
experiment	and	learned	from	it,	was	strongly	tied	to	the	amount	of	effort	put	in	by	the	experiment	owner.	

3.2 Implicitly	in	a	Hurry	
Beyond	having	so	much	 to	 learn,	 there	was	pressure	 to	hurry.	 I	observed	 this	pressure	while	 I	was	a	Scrum	
Master,	and	I	had	addressed	it	multiple	times,	emphasizing	that	the	default	assumption	should	be	that	we	do	
our	work	well	unless	there	is	an	explicit	decision	to	take	on	technical	debt	now	for	an	urgent	need.	I	had	always	
assumed	that	it	was	the	Product	Owner	or	people	in	similar	roles	who	were	pressuring	the	team	to	cut	corners	
and	hurry	up	when	I	was	not	around.	I	did	not	realize	that	I	was	part	of	the	problem.	

A	classic	experience	 in	software	development	 is	Product	Owners	and	other	stakeholders	asking	how	long	
something	will	 take	and	expressing	 their	eagerness	 to	see	 it	 implemented.	This	 implies	 that	sooner	 is	better	
without	 explicitly	 requesting	 compromises.	 The	 project’s	 product	 management	 team	 made	 a	 few	 explicit	
decisions	 to	rush	efforts,	but	 in	general	were	respectful	of	 the	 time	 it	 took	 to	accomplish	 things	well.	To	my	
surprise,	the	pressure	to	hurry	rarely	came	from	them.	

The	 Scrum	 Masters	 also	 supported	 us	 in	 doing	 good	 work	 and	 certainly	 did	 not	 ask	 us	 to	 rush	 or	 cut	
corners,	 but	 the	metrics	 they	 tracked	 told	 another	 story.	 Cycle	 time	 and	 sprint	 velocity	 imply	 that	 faster	 is	
better,	especially	because	we	would	talk	about	“what	happened”	to	work	with	a	lengthy	cycle	time	or	to	sprints	
with	lower	velocity.	Metrics	about	code	quality	were	given	much	less	attention.	

The	focus	on	getting	more	done	sooner	without	a	counter-balance	certainly	implied	that	we	should	sacrifice	
what	we	could	to	get	features	done,	but	what	really	surprised	me	was	that	the	most	explicit	pressure	to	hurry	
came	 from	my	 fellow	 software	 developers.	When	 implementing	 a	 piece	 of	 new	 functionality,	 I	 would	 come	



Undercover	Scrum	Master:	Page	-	5	
 

across	code	that	should	be	rewritten	to	improve	the	codebase	and	make	future	changes	easier.	This	code	might	
even	have	a	comment	left	behind	by	a	previous	developer	saying	that	the	code	should	be	cleaned	up.	I	would	
usually	 ask	 a	 fellow	 developer	 for	 help	 or	 advice	 on	 how	 to	 rewrite	 the	 piece	 of	 code.	 Several	 times	 I	 was	
advised	to	leave	the	code	alone	and	consider	the	backlog	item	complete,	even	though	the	person	agreed	that	
the	code	was	bad	and	should	be	improved.	This	advice	was	given	along	with	justifications	about	the	refactoring	
taking	“too	long”	or	comments	about	nearing	the	end	of	the	sprint	and	needing	to	get	all	backlog	items	“done”	
by	the	end.	

My	 interpretation	 of	 this	 pressure	 to	 rush	 is	 that	 the	 team	 incurred	 “unauthorized	 technical	 debt.”	 The	
concept	of	technical	debt	is	that	something	is	implemented	more	like	a	prototype	now	with	the	understanding	
that	 the	 code	will	 have	 to	be	 rewritten	 later,	making	 the	overall	 effort	 greater.	 This	 can	be	 a	 good	business	
decision	 in	 some	 cases	where	 early	 revenue,	 acquiring	 customers,	meeting	 a	 compliance	 deadline,	 or	 other	
payoff	is	worth	the	extra	effort.	There	was	no	such	business	decision	in	the	cases	where	I	was	advised	to	skip	
improving	a	piece	of	code.	

One	thing	that	helped	counteract	 this	attitude	was	the	explicit	adoption	of	Thoroughness	as	a	 team	value	
and	 regular	 reinforcement	 of	 our	 team	 values	 at	 retrospectives	 where	 we	 shared	 examples	 where	 we	 had	
fallen	short	or	exemplified	our	values.	When	someone	on	the	team	identified	important	improvements	to	make	
to	 the	 test	 suites,	 the	 naming	 of	 classes	 and	 methods,	 or	 some	 other	 aspect	 of	 code	 organization,	 a	 team	
member	would	on	occasion	humorously	tease	them	that	our	team	is	thorough	and	look	at	them	skeptically	to	
see	 if	 they	were	 going	 to	make	 the	 improvements	 or	 skip	 them.	 Since	most	 of	 us	 preferred	 to	 improve	 the	
codebase	anyway,	this	was	usually	all	the	encouragement	it	took	to	follow	through.	

Another	 practice	 that	 addressed	 some	 of	 the	 technical	 debt	 was	 adopting	 a	 “20%	 rule”	 where	 20%	 of	
developers’	 time	was	set	aside	 to	work	on	whatever	part	of	 the	system	we	wanted.	Permission	to	pay	down	
technical	 debt	 was	 all	 that	 we	 needed	 to	 dive	 in.	 We	 were	 happy	 to	 be	 given	 the	 chance	 and	 feeling	 of	
permission	to	take	time	to	make	improvements	that	probably	should	have	been	done	much	earlier.	

We	made	 a	major	 cutover	 less	 than	 a	 year	 into	my	 time	 on	 the	 project.	 Because	 of	 all	 the	 stakeholders	
involved,	the	product	management	team	made	an	explicit	decision	to	rush	and	release	something	that	was	not	
ready.	 The	 production	 issues	 that	 followed	 on	 this	 release	 led	 to	 an	 emphasis	 on	 improving	 the	 quality	
assurance	 practices	 across	 the	 project.	 Among	 the	 things	 tried	 during	 this	 time	 was	 an	 assessment	 of	 the	
riskiness	 of	 each	 codebase	 as	 well	 as	 the	 state	 of	 various	 risk-mitigations,	 including	 automated	 testing,	
telemetry,	and	built-in	resilience.	These	scores	were	visualized,	and	attention	was	brought	to	risky	codebases	
with	 poor	 mitigation.	 Attention	 to	 these	 metrics	 served	 as	 a	 counter-balance	 to	 the	 cycle	 time	 and	 sprint	
velocity	metrics.	

Developers	may	make	unwarranted	assumptions	that	they	should	hurry	and	make	compromises,	and	these	
assumptions	are	 confirmed	by	Scrum	Masters,	Product	Owners,	 and	others	 focusing	primarily	on	 cycle	 time	
and	sprint	velocity.	These	metrics	and	conversations	imply	that	developers	should	hurry	up.	When	building	a	
prototype	or	proof-of-concept	for	a	start-up,	such	compromises	may	be	sound	business	decisions,	but	in	other	
cases,	such	as	long-lived	federal	IT	systems,	these	compromises	are	almost	guaranteed	to	cost	more	in	the	long	
run.	Metrics,	 conversations,	 and	 celebrations	of	 improving	 the	quality	 and	maintainability	 of	 the	 system	are	
important	to	offset	this	pressure	to	hurry.		

3.3 Feedback	loops	and	planning	activities	
Regardless	of	the	amount	to	learn	or	any	feelings	of	being	rushed,	I	found	writing	code	to	be	very	rewarding.	
Planning	activities,	however,	became	some	of	my	least	favorite	meetings,	even	though	I	had	cared	deeply	about	
them	as	a	Scrum	Master.	I	had	observed	this	in	the	teams	I	worked	with	as	a	Scrum	Master,	but	I	did	not	expect	
to	change	my	attitude	so	dramatically.	

I	could	see	the	direct	effect	of	code	I	wrote	with	immediate	results.	Coaching	a	team,	however,	had	long	and	
often	 indirect	 feedback	 loops.	While	some	work	was	certainly	 frustrating	or	difficult,	 focusing	on	a	problem,	
solving	it,	and	seeing	the	effects	of	my	work	was	gratifying	and	fun.	The	outcome	also	provided	a	positive	and	
rapid	feedback	loop	with	relatively	little	ambiguity.	In	contrast,	my	previous	work	as	a	Scrum	Master	involved	
a	slower	feedback	loop	with	less	obvious	results.	My	efforts	as	a	Scrum	Master	were	directed	toward	helping	
my	 team	 become	more	 effective,	 but	 even	where	 I	 was	 successful,	 the	 changes	 usually	 took	 place	 over	 the	
course	 of	 weeks	 and	 took	 observation	 and	 judgment	 to	 see.	 Backlog	 refinement	 and	 sprint	 planning	 have	
visible	results	that	I	appreciated	as	a	Scrum	Master,	but	they	paled	next	to	the	results	of	writing	code.	

Few	developers	 on	 the	 team,	 if	 any,	were	 excited	 about	 participating	 in	 backlog	 refinement.	 As	 a	 Scrum	
Master,	 I	 saw	 backlog	 refinement	 as	 important	 for	 everyone,	 and	 I	 imagined	 that	 developers	 would	 find	 it	



Undercover	Scrum	Master:	Page	-	6	
 

rewarding	because	it	gave	them	a	voice	in	guiding	the	direction	of	future	work.	It	definitely	frustrated	me	and	
my	 teammates	 to	 look	at	 a	PBI	 for	 the	 first	 time	 in	 the	 sprint	backlog	 and	 to	disagree	with	 the	direction	or	
implied	 implementation.	 In	 these	 situations,	 I	 would	 wish	 that	 I	 had	 been	 present	 for	 the	 refinement	
conversations	before	the	sprint,	but	when	the	next	refinement	conversation	come	up,	I	was	not	any	more	eager	
to	join.	

My	 feelings	as	a	development	 team	member	were	at	odds	with	how	I	 felt	as	a	Scrum	Master,	and	also	at	
odds	with	my	intellectual	understanding	of	the	importance	of	planning	activities.	This	made	the	most	sense	to	
me	when	I	compared	how	quickly	and	frequently	my	coding	efforts	paid	off	with	the	delayed	pay-off	of	backlog	
refinement.	 The	 experience	was	 a	 case	 of	 immediate	 vs.	 delayed	 gratification.	 Neither	 I	 nor	my	 teammates	
objected	to	these	activities,	but	we	might	not	show	up	to	them	if	we	were	invited	to	attend	only	voluntarily.	I	
volunteered	more	than	the	average,	probably	in	part	because	I	came	into	the	team	already	placing	a	high	value	
on	backlog	refinement,	but	refinement	conversations	did	tend	to	lean	more	heavily	on	a	subset	of	developers.	

We	 had	 other	 “chores”	 that	 were	 a	 shared	 responsibility	 which	 were	 less	 fun	 that	 writing	 code.	 We	
experimented	with	a	points	system	inspired	by	the	Harry	Potter	“house	points”	approach	where	various	chores	
were	rewarded	 in	 the	hope	 that	a	broader	population	would	volunteer	 for	various	activities.	While	 I	believe	
such	a	system	could	work,	 the	 incentives	and	rules	ended	up	dis-incentivizing	a	majority	of	 the	team.	Points	
were	awarded	for	a	delineated	list,	including	acting	as	the	scribe	for	a	meeting,	as	well	as	ad-hoc	awards	by	the	
project	leads.	There	was	a	prize	for	the	team	with	the	most	points	at	the	end	of	each	month,	but	if	a	team	had	a	
clear	 lead,	the	other	two	teams	figured	it	was	not	worth	their	effort	to	come	from	behind,	and	then	even	the	
leading	team	figured	that	since	they	were	winning,	there	was	not	much	reason	to	volunteer	for	more.	

Finally,	 the	 project	 successfully	 involved	 the	 full	 population	 of	 team	members	 by	 implementing	 various	
rotations	 for	 these	 chore-like	activities.	We	had	 to	 swap	shifts	on	occasion,	but	 simply	 taking	 turns	ensured	
that	we	 all	 took	part.	 Because	 the	 chore	was	 shared	 evenly,	 nobody	 felt	 justified	 in	 skipping	 out	 of	 less-fun	
meetings.	For	some	chores,	such	as	being	on-call	for	production	support,	we	held	a	snake	draft	to	claim	shifts	
for	a	month,	allowing	people	to	pick	days	that	worked	better	for	their	schedules.	

I	 intend	 to	 take	 this	 insight	 into	 future	 facilitation	 roles:	 a	 lack	of	 enthusiasm	may	 simply	mean	 that	 the	
given	activity	feels	like	a	chore	to	someone,	even	though	they	understand	and	agree	with	its	importance.	The	
lack	of	enthusiasm	does	not	necessarily	indicate	disagreement.	Sometimes	we	just	have	to	do	our	chores.	

3.4 Test-Driven	Development	(TDD)	
Test-Driven	Development	was	a	key	reason	that	I	embarked	on	this	journey.	I	wanted	to	understand	why	my	
teams	resisted	TDD	and	whether	it	was	as	amazing	as	some	proponents	claim.	When	the	testing	infrastructure	
was	 in	place	and	well-done,	 the	 rapid	visual	 feedback	 loop	was	gratifying	and	motivating.	 In	 contrast,	when	
working	in	areas	of	the	code	where	the	tests	were	sparse,	finicky,	or	riddled	with	dependencies,	the	work	was	
onerous,	 and	 I	 simply	 wanted	 to	move	 on	 to	 something	 else.	 Good	 testing	 infrastructure	 required	 a	 group	
effort,	which	could	be	hard	to	make	time	for	since	it	is	invisible	to	most	stakeholders.	

Automated	testing	was	important	to	everyone,	especially	because	every	code	commit	to	the	master	branch	
was	automatically	deployed	to	the	production	environment	if	it	passed	all	automated	tests.	I	tried	TDD	on	my	
own	and	with	teammates	several	times.	It	was	often	a	great	experience.	In	addition	to	the	enjoyable	feedback	
loop	of	making	code	changes	and	seeing	 the	effect,	 I	also	had	 the	gratifying	reassurance	 that	 I	had	written	a	
failable	 test	 that	now	passed	because	of	my	 code.	This	 amplified	my	enjoyment	of	 coding.	Even	when	 I	was	
confident	that	the	code	worked	as	intended,	a	simple	test	could	uncover	bad	assumptions.	For	example,	I	added	
a	one-time	event	as	a	“holiday,”	and	I	had	clearly	specified	it	as	occurring	in	its	specific	year.	The	test	for	the	
holiday	worked,	but	it	was	easy	enough	to	add	another	test	to	prove	that	it	was	a	one-time	thing.	Instead,	that	
test	uncovered	logic	that	ignored	years	and	only	matched	on	month	and	day,	which	would	have	made	the	event	
into	an	annual	holiday.	This	seemingly	unnecessary	and	simple	test	caught	a	defect	that	might	have	survived	
for	years.	

	This	rapid	feedback	loop	was	easy	when	the	existing	code	was	already	well-tested.	The	other	tests	in	the	
neighborhood	provided	examples	to	follow	and	served	as	encouragement	to	maintain	the	test	suite.	Building	
out	such	a	good	automated	test	suite	took	time	and	dedication.	Where	tests	were	better,	it	was	easier	to	keep	
them	in	good	shape	and	contribute	further.	Well-configured	testing	frameworks	and	custom	test	support	also	
encouraged	me	to	write	 tests.	For	example,	we	used	Rswag	to	 test	API	calls	against	 their	schema	definitions	
and,	because	the	schema	was	comprehensive	and	avoided	repetition,	it	was	natural	to	update	the	schema	when	
making	changes.	



Undercover	Scrum	Master:	Page	-	7	
 

Where	tests	were	poor,	however,	it	was	easier	to	leave	them	alone	and	contribute	to	the	problem.	Fighting	
with	 testing	 frameworks	and	mock	objects	was	not	 a	 rewarding	experience	because	 they	are	 tertiary	 to	 the	
production	code	changes.	Even	more	demotivating,	however,	was	working	on	existing	code	with	few	or	poor-
quality	 tests.	 In	 these	cases,	 it	was	 tempting	 to	 leave	behind	only	a	minimum	of	new	tests.	The	 lack	of	good	
tests	 was	 often	 a	 sign	 that	 the	 code	 in	 question	 was	 not	 designed	 to	 be	 easily	 testable	 and	 had	 strange	
dependencies.	In	one	example,	we	used	the	VCR	library	for	recording	and	replaying	web	requests,	but	instead	
of	using	it	as	intended,	we	built	up	a	pattern	of	hand-editing	the	recorded	responses.	While	this	library	would	
ideally	make	mock	web	requests	 stable	and	quick,	we	 took	shortcuts	early	on	 that	 snowballed	 into	a	 fragile	
suite	 that	 could	 not	 be	 re-recorded	 automatically,	 thus	making	 any	 future	 changes	 a	 frustrating	 exercise	 in	
guessing	at	how	the	recordings	were	created.	

Testing	 first,	which	 is	 essential	 to	TDD,	 amplified	any	difficulties	with	 the	 existing	 code	and	 tests.	 It	was	
easier	to	figure	out	after	the	fact	how	to	test	a	new	class	or	method	than	it	was	to	start	that	way.	When	I	was	a	
Scrum	Master	my	advice	was	to	write	tests	and	improve	the	testing	infrastructure	as	part	of	each	PBI.	While	
this	is	sound	advice	to	refactor	as	you	go,	a	codebase	can	rapidly	deteriorate	unless	the	entire	set	of	developers	
remain	 disciplined.	 A	 codebase	 that	 already	 has	 problematic	 testing,	 such	 as	 some	 parts	 of	 my	 project’s	
codebase,	 can	 really	 benefit	 from	 some	 dedicated	 and	 concerted	 efforts	 to	 improve	 the	 tests	 and	 testing	
infrastructure.	 Without	 that	 concerted	 effort,	 individual	 developers	 can	 only	 do	 so	 much	 and	 may	 become	
overwhelmed	by	the	enormity	of	the	cleanup	effort.	

3.5 Pair	Programming	
The	 culture	 across	 the	 teams	was	 fun	 and	 very	 collaborative.	 Even	 so,	we	 did	 not	 practice	 the	 kind	 of	 pair	
programming	 that	 I	 have	 read	 about.	 We	 frequently	 swarmed	 and	 pair-programmed	 on	 PBIs.	 All	 of	 the	
developers	would	gather	for	10	to	15	minutes	for	impromptu	“Code	&	Coffee”	sessions	where	the	person	who	
called	the	session	shared	something	they	had	found	or	written.	When	someone	needed	help,	they	could	type	a	
Slack	 command	 that	 triggered	 our	 “andon	 cord,”	 alerting	 their	 team,	 turning	 on	warning	 lights	 in	 the	 team	
room,	and	getting	the	team's	immediate	attention	and	assistance.	When	we	“swarmed”	or	“pair	programmed,”	
however,	 each	 person	 had	 their	 own	 computer.	 Switching	 drivers	 required	 the	 time-cost	 of	 committing,	
pushing,	and	pulling	code.	Because	of	this	transaction	cost	we	would	often	keep	one	person	driving	for	over	an	
hour.	When	the	pair	or	another	member	of	the	swarm	saw	a	specific	change	to	make	or	command	to	add,	they	
would	dictate	the	text	or	give	explicit	 instructions	to	the	driver.	These	changes	would	have	been	far	 faster	 if	
they	had	switched	drivers	 for	a	minute,	which	 is	part	of	 the	promise	of	 the	“two	developers,	keyboards,	and	
mice	with	one	computer”	model.	

One	thing	that	made	it	uncomfortable	to	switch	drivers	on	the	same	computer	was	that	we	each	used	the	
editor	 of	 our	 choice	 with	 multiple	 customizations.	 Typing	 and	 editing	 on	 another	 developer’s	 machine	 felt	
alien,	 slow,	 and	 prone	 to	 unintended	 consequences	 such	 as	 when	 using	 a	 habitual	 shortcut	 that	 works	
differently.	We	were	also	not	in	the	habit	of	plugging	in	keyboards	or	mice	to	our	laptops,	so	setting	up	two	sets	
of	peripherals	would	have	been	a	strange	thing	to	see.	Without	the	duplicated	peripherals,	however,	there	was	
the	friction	of	being	polite	about	taking	over	someone’s	computer.	That	is,	when	seeing	something	that	needs	
to	 be	 corrected,	 it	 feels	 rude	 to	 push	 someone	 aside	 in	 order	 to	 type	 on	 their	 computer.	 Only	 when	 I	 felt	
frustrated	by	not	 seeing	what	 I	was	being	asked	 to	do	did	 I	 think	 to	 slide	my	 laptop	over	and	offer	 it	 to	my	
teammate.	

I	still	hope	to	 find	opportunities	to	pair	with	duplicate	peripherals,	 the	“real”	way.	 I	have	not	 lost	 faith	 in	
pair	programming,	although	I	do	appreciate	other	forms	of	close	collaboration.	What	does	strike	me,	though,	is	
that	 pair	 programming	 is	 not	 a	 natural	 result	 of	 close	 collaboration.	 It	 requires	 setting	 up	 the	 right	
environment	 (the	 desk,	 computer,	 peripherals,	 chairs,	 editor,	 bindings,	 etc.)	 and	 then	 agreeing	 to	 and	
practicing	habits	of	passing	off	control	of	the	computer.	This	takes	commitment	and	practice,	since	it	is	not	a	
natural	evolution.	

4. WHAT	I	LEARNED	

I	did	not	have	 the	 experience	 I	wanted	with	 the	 two	key	practices	 that	motivated	me	 to	become	a	 software	
developer:	TDD	and	pair	programming.	While	I	still	see	their	potential	value,	I	have	a	much	better	appreciation	
for	why	taking	them	on	is	a	challenge	for	so	many	developers	and	teams.	I	still	hope	to	do	each	of	them	more	in	
order	to	 fully	experience	them.	When	coaching	a	team	to	try	TDD,	pair	programming,	or	something	else	that	
requires	 discipline	 and	 is	 not	 a	 natural	 evolution,	 I	 intend	 to	 advocate	 for	 a	 commitment	 to	 stick	 with	 the	
practice	for	an	extended	period	of	time	before	rejecting	it.	As	an	illustration:	riding	a	bike	is	not	rewarding	at	



Undercover	Scrum	Master:	Page	-	8	
 

first,	 wobbling	 and	 tipping	 over,	 but	 after	 sufficient	 practice	 it	 is	 a	 fun	 and	 efficient	 way	 to	 cover	 ground.	
Rejecting	bike-riding	while	 it	 is	still	 slow	and	painful	 is	not	a	 fair	assessment.	On	the	other	hand,	 few	would	
learn	 to	 ride	a	bike	 if	 they	could	not	 see	others	enjoying	 it.	 Simply	having	an	 intention	 to	 try	 the	practice	 is	
unlikely	to	result	in	much.	

The	stereotypical	complaint	about	“too	many	meetings”	resonates	with	me	far	more	than	it	did,	given	that	
many	meetings	are	part	of	 slower	and	 less-rewarding	 feedback	 loops.	Worthwhile	activities	are	worthwhile,	
however,	even	if	they	are	not	enjoyable.	A	lack	of	enthusiasm	for	an	activity	is	not	implicitly	an	objection	to	it.	
The	 “tragedy	 of	 the	 commons,”	where	 shared	 responsibilities	 for	 long-term	 success	 are	 neglected,	 seems	 to	
apply	 to	 software	 development	 teams.	My	 limited	 experience	 indicates	 that	 the	 effect	 is	 greater	with	 larger	
teams,	which	also	just	makes	sense	to	me	because	as	more	people	share	responsibility,	each	individual	has	a	
smaller	share.	 I	expect	 to	 take	extra	care	 to	ensure	 that	 teams	understand	the	value	of	 the	various	activities	
they	 support,	 as	 well	 as	 improving	 the	 quality	 and	 rapidity	 of	 the	 feedback	 loops	 involved.	 Assigning	
ownership,	 rotating	 or	 otherwise,	 is	 now	 a	 tool	 I	 have	 gained	 for	 ensuring	 that	 shared	 responsibilities	 are	
addressed	well.	

Even	unintentionally,	Scrum	Masters,	Product	Owners,	and	others	may	imply	that	a	software	development	
team	should	 rush	and	cut	 corners.	 I	believe	 that	 it	 is	 important	 to	counterbalance	 that	 inference	 in	order	 to	
maintain	 and	 improve	 the	 codebase	 in	 order	 to	 avoid	 catastrophe.	 On	 the	 one	 hand,	 software	 developers	
should	be	professionals,	 acting	 in	 the	best	 interests	 of	 their	 clients	 and	 stakeholders:	we	 should	 just	 do	 the	
right	thing.	On	the	other	hand,	 if	you	nag	your	surgeon	enough	to	hurry	up,	he	might	be	tempted	to	skip	the	
hand-washing	 and	 use	 half	 as	many	 stitches.	 Just	 as	 surgeries-per-day	 should	 not	 be	 the	 primary	metric	 of	
success	 for	 hospitals,	 making	 features-per-iteration	 your	 primary,	 much	 less	 only,	 metric	 can	 incentivize	
unmaintainable	 code.	 Explicit	 support	 for	 improving	 and	 maintaining	 the	 codebase	 is	 important	 from	 all	
concerned.	 Looking	 at	metrics	 or	 other	 assessments	 of	 code	 quality	 can	 be	 an	 important	 counterbalance	 to	
velocity/cycle-time	metrics.	While	end	users	may	not	be	impressed	by	re-writes	and	refactoring,	the	team	and	
relevant	stakeholders	should	celebrate	these	improvements.	

Team	members	who	work	with	numerous	 tools	and	technologies	may	have	a	heavy	cognitive	 load	which	
discourages	 them	 from	 adopting	 new	 processes	 and	 practices.	 Appreciating	 this	 will	 change	 how	 I	 view	
improvement	efforts	and	lack	of	follow-through.	Easing	the	burden	improves	the	chances	that	a	new	approach	
will	stick	or	that	an	experiment	will	be	carried	out.	It	also	helps	in	other	areas	where	people	are	expected	to	
remember	 the	agreed-upon	way	 to	do	something.	Checklists,	 templates,	and	other	write-ups	are	helpful,	but	
mostly	when	they	appear	in	the	space	in	which	you	already	are,	rather	than	in	a	library	that	must	be	checked.	
Given	our	human	nature,	timely	hints	and	reminders	are	invaluable.	In	addition	to	providing	these	aids,	I	also	
plan	 to	 sometimes	 simply	 take	 action	 and	 encourage	 others	 to	 do	 the	 same:	 the	 lack	 of	 appetite	 to	 discuss	
improvements	or	experiments	does	not	mean	 that	people	are	opposed	 to	 the	 improvements	or	experiments	
themselves.	

5. ACKNOWLEDGEMENTS	

Every	member	of	the	“Bits,	Please!”	team	has	been	a	joy	to	work	with,	helping	me	grow	as	a	software	developer	
and	teammate,	and	putting	up	with	me	patiently:	Matt	Acors,	Mark	Brown,	Jay	Danielian,	Kaleb	Dufera,	Hugh	
Gardiner,	 Cameron	 Ivey,	Mark	Koenig,	Angela	 Lu,	Griffin	Norris,	 Iksu	Oh,	 Jen	Pengelly,	 Chris	 Petro,	 and	 Siva	
Sivakumar.	 This	 experience	 report	would	 have	made	 far	 less	 sense	without	 terrific	 feedback	 from	 Candase	
Hokanson,	Mindy	Bohannon,	and	Mark	Koenig.	Mark	Grove,	Mark	Heppler,	and	Mark	Koenig	each	encouraged	
me	to	share	what	I	had	learned	from	my	time	as	a	developer.	Julie	Wyman	suggested	the	“Undercover	Scrum	
Master”	 title	 for	 the	 first	 time	 I	 spoke	about	my	experience.	There	would	be	no	experience	 report	 if	 not	 for	
support	for	my	mission	from	my	employer,	Excella.	Tony	Solomita	and	Fadi	Stephan	were	both	instrumental	in	
arranging	for	my	transition	and	I	am	indebted	to	them.	No	one	believed	in	me	more	or	sacrificed	more	for	this	
than	my	wife,	Jeanne	Weber,	whose	support	was	essential.	Thank	you!		
REFERENCES	
Larman,	C.,	&	Vodde,	B.,	“Scrum	Master	focus”	within	the	Large-Scale	Scrum	(LeSS)	framework,	
https://less.works/less/structure/scrummaster.html#ScrumMasterfocus	


