
 

	
Author's	address:	Kevin	Thompson.	Cprime.	107	S	B	St,	Ste	200,	San	Mateo,	CA	94401.	Email:	Kevin.thompson@cprime.com.	
Copyright	2019	is	held	by	the	author. 

Agile	Hardware	at	Bird	Technologies	
KEVIN	THOMPSON,	PH.D.	Chief	Scientist,	Cprime	

Bird	 Technologies	 has	 found	 Scrum	 and	 Agile	 techniques	 useful	 for	 developing	 both	 hardware	 and	 software	 elements	 of	 their	 radio-
frequency	 test	 and	 communications	 equipment.	 	 This	 article	 describes	 how	 the	 author	 guided	 the	 company’s	 migration	 to	 an	 Agile	
development	process,	with	 an	 emphasis	on	 challenges	 encountered	and	 lessons	 learned.	The	 central	 conclusion—that	 Scrum	and	Agile	
techniques	 apply	 as	 well	 to	 mechanical	 and	 electrical	 engineering	 as	 they	 do	 to	 software	 development—is	 confirmed	 by	 the	 smooth	
adoption	of	these	concepts	at	Bird	Technologies.	

1. INTRODUCTION	

Bird	 Technologies	 is	 a	 telecommunications	 company	 headquartered	 in	 Solon,	 Ohio.	 Founded	 in	 1942	 by	 J.	
Raymond	 Bird,	 and	 still	 family-owned,	 the	 company	 specializes	 in	 high-accuracy	 and	 high-reliability	 radio-
frequency	 (RF)	 testing	 and	 communication	 equipment.	 As	 of	 2018,	 the	 company	 had	 approximately	 300	
employees	across	multiple	locations.	

The	company’s	current	president,	Terrance	 (Terry)	Grant,	was	promoted	 to	 this	 role	 in	September	2017,	
and	moved	swiftly	to	address	improve	the	company’s	ability	to	develop	and	ship	products.	John	Winter,	then	
Interim	Manager	of	Engineering	and	Innovation,	took	this	mandate	and	began	the	search	for	solutions.	

When	 training	 in	Lean	Business	Systems	 led	 to	 improvements	 in	Bird’s	manufacturing	process,	 they	next	
looked	to	find	ways	to	improve	the	company’s	ability	to	develop	products.	John’s	search	led	quickly	to	Cprime,	
and	my	papers	on	 the	application	of	Agile	concepts	 to	hardware	development.	We	agreed	on	a	Statement	of	
Work	 to	 transform	 the	 engineering	 organization	 to	 Agile	 development,	 and	 kicked	 off	 the	 first	 of	 two	
consulting	engagements	in	January	2018.	I	recruited	Abid	Akhtar,	a	consultant	based	in	Houston,	TX,	to	assist.	

Compared	to	most	Agile	transformations,	the	novelty	with	Bird	Technologies	was	the	application	of	Scrum	
and	 Agile	 techniques	 to	 work	 that	 involved	 Mechanical	 Engineering	 and	 Electrical	 Engineering,	 along	 with	
firmware	 and	 software	development.	 This	work	 is	 differs	 from	 software	development	 in	 key	ways,	 and	 this	
engagement	highlighted	those	differences.	

2. BACKGROUND	

Several	Scrum	myths	cause	many	to	believe	Scrum	and	other	Agile	techniques	are	inappropriate	for	hardware	
development.	Some	of	these	myths	include:	

• Long	lead	times	for	component	orders	make	finishing	a	Story	in	a	two-week	Sprint	impossible.	
• The	amount	of	work	required	to	produce	functioning	device	components	is	too	great	to	fit	into	a	two-

week	Sprint,	which	is	incompatible	with	Scrum.	
• Scrum	 requires	 developing	 capabilities	 as	 vertical	 slices	 across	 layers	 of	 technology,	 which	 is	

incompatible	with	hardware	development.	
• Scrum	depends	on	Story-Point	estimation	and	collaboration	via	swarming,	but	these	are	not	possible	

in	hardware	development.	
	

Many	of	these	myths	emerge	from	the	way	Scrum	is	often	is	taught	and	coached	as	a	software-development	
methodology.	 The	 reality	 is	 Scrum	 is	 a	 way	 to	 organize	 people	 to	 get	 a	 job	 done	 and	 can	 work	 well	 with	
hardware-oriented	 product	 development.	 In	 fact,	 in	 Takeuchi	 and	 Nonaka’s	 “The	 New	 New	 Product	
Development	Game,”	[1]	which	influenced	Jeff	Sutherland’s	early	work	on	Scrum,	all	the	example	projects	are	
hardware	projects	such	as	Canon’s	PC-10	personal	photocopier.			
	



Agile	Hardware	at	Bird	Technologies:	Page	-	2	
 

My	research	and	conclusions	on	how	to	apply	Scrum	and	other	Agile	concepts	to	development	of	hardware	
products	 are	 documented	 in	 my	 paper,	 “Agile	 Processes	 for	 Hardware	 Development,”	 [2]	 and	 in	 my	 book,	
Solutions	for	Agile	Governance	in	the	Enterprise	(Sage)	[3].	

The	 Agile	 transformation	 for	 Bird	 Technologies	 would	 provide	 the	 largest-scale	 test	 yet	 of	 these	
discoveries,	ultimately	spanning	nine	 teams.	The	work	was	spread	across	 two	consulting	engagements,	each	
with	 its	 own	 focus.	The	 first	 engagement	brought	 Scrum	 to	 two	engineering	 teams,	while	 the	 second	 scaled	
Agile	collaboration	to	span	all	groups	involved	in	product	development,	including	engineering,	manufacturing,	
sales,	and	support.	

3. CONSULTING	WORK	

The	 goal	 of	 the	 first	 consulting	 engagement	 was	 to	 get	 two	 hardware-development	 teams	 up	 and	 running	
effectively	with	Scrum.	The	second	focused	on	scaling	the	process	to	nine	collaborating	teams.	The	focus	in	this	
paper	is	on	the	hardware-related	aspects,	which	are	critical	at	the	team	level	but	less	so	at	the	organizational	
level.	

We	began	on	Jan	29,	2018,	with	me	teaching	two	days	of	Certified	Agile	Hardware	Practitioner	 training	at	
the	company’s	Solon,	OH	headquarters,	 followed	by	more	time	on-site	 to	mentor	and	coach	the	organization	
through	 the	 first	 three	 two-week	Sprints.	The	attendees	 for	 this	 “Scrum	 for	Hardware”	 class	 included	 teams	
responsible	 for	 two	 products.	 One	 team	 was	 the	 M2M	 (“Machine	 to	 Machine”)	 product,	 which	 produced	
hardware	 solutions	 to	 operate	 and	 collect	 data	 from	 remote	 sensors.	 The	 other	 was	 the	 RFIP	 team,	 which	
developed	amplifiers	and	relays.	The	RFIP	team	was	primarily	based	in	the	Angola,	NY	facility,	with	some	key	
members	in	Ohio.	

3.1 Challenge:	Who	should	be	Scrum	Master?	
The	first	challenge	emerged	on	our	first	coaching	day,	as	we	discussed	who	should	fill	the	Scrum	Master	role	
for	the	RFIP	team.	In	the	training,	I	had	emphasized	that	it	was	unwise	to	have	one	person	act	as	both	Team	
member	and	Scrum	Master,	 since	 the	effectiveness	of	 the	Scrum	Master	 role	 suffers.	Unfortunately,	 this	was	
exactly	what	they	had	been	intending	to	do,	and	now	the	challenge	was	to	find	someone	else	who	could	fill	the	
Scrum	Master	role.	

An	effective	Scrum	Master	must	 first	have	enough	time	to	do	all	 the	 things	 that	are	needed	to	enable	 the	
team	 to	 be	 successful.	 The	 person	must	 also	 have	 the	 right	mix	 of	 supportiveness	 and	 firmness	 (especially	
around	protecting	the	team	members’	time	and	plans	from	disruption).	A	Scrum	Master	does	not	have	to	have	
enough	technical	knowledge	to	do	the	work	of	the	team	members,	but	must	have	enough	to	communicate	with	
them	effectively	on	technical	topics.	

We	 spent	 much	 of	 the	 day	 discussing	 alternatives.	 In	 the	 end,	 one	 of	 the	 people	 present	 (Jim)	 was	
“volunteered”	 to	be	Scrum	Master	 for	 the	moment,	but	 this	was	not	work	he	 could	 take	on	 indefinitely.	The	
name	of	another	person	came	up	frequently	in	the	conversation,	and	the	group	eventually	made	the	decision	to	
ask	him	to	take	on	the	role.	Unfortunately,	as	he	had	not	been	identified	as	someone	who	needed	training,	he	
had	remained	 in	Angola,	and	had	not	attended	 the	class.	Abid	and	 Jim	would	have	 to	work	closely	with	him	
over	time	to	bring	him	up	to	speed	on	his	new	role.	

Fortunately,	everyone	agreed	that	Ken	would	be	the	Product	Owner,	and	he	did	attend	the	training.	Ken’s	
role	had	already	included	product	definition	with	respect	to	business	and	customer	needs,	and	so	he	fit	the	role	
naturally.	

Also	 fortunate	was	that	 filling	the	roles	 for	 the	M2M	team	was	straightforward.	 In	particular,	Ann,	one	of	
Bird’s	project	managers,	was	a	natural	for	the	Scrum	Master	role.	She	had	the	right	mindset	and	sufficient	time	
to	fulfill	the	responsibilities	of	the	role.	

3.2 Challenge:	Writing	Stories	
User	Stories	provide	a	common	format	for	describing	some	aspect	of	a	product	that	a	team	will	produce.	Each	
such	 Story	 contains	 a	 Title,	 a	 first-person	 Narrative	 that	 describes	 how	 a	 particular	 user	 role	 performs	 an	
action	in	order	to	achieve	a	particular	benefit,	and	a	list	of	Acceptance	Criteria	to	be	confirmed	during	testing	of	
the	deliverable.	

The	concept	of	User	Stories	goes	hand-in-hand	with	the	standard	advice	to	“implement	software	features	
across	 all	 levels	 of	 the	 technology	 stack,”	 meaning	 to	 implement	 the	 functionality	 by	 making	 appropriate	
changes	to	the	user	interface,	the	application	logic,	the	database,	and	other	architectural	layers	or	sub-systems	



Agile	Hardware	at	Bird	Technologies:	Page	-	3	
 

for	 each	 such	 capability.	 To	 implement	 any	 one	 User	 Story	 usually	 requires	 touching	 the	 code	 for	multiple	
layers.	

Unfortunately,	these	patterns	didn’t	apply	to	the	work	Bird	Technologies	needed	to	do.	Much	of	their	work	
required	designing	and	modifying	circuits	and	boards,	 isolating	unruly	RF	signals,	routing	cables,	and	tuning	
RF	 transmissions,	 as	 well	 as	 developing	 the	 firmware	 and	 user	 software.	 While	 the	 devices	 are	 complex,	
relatively	 little	 of	 the	 work	 relates	 to	 specific	 user-oriented	 features	 of	 the	 products.	 Instead,	 the	 internal	
elements	of	 the	product	must	be	designed	 from	 the	beginning	 to	 support	a	 range	of	 capabilities,	which	only	
become	usable	later	when	the	device	has	accumulated	enough	parts	to	have	some	kind	of	behavior.	

In	 other	words,	most	 pieces	 of	 the	 RF	 devices	 Bird	 designs	 could	 not	 be	 represented	 as	 User	 Stories.	 A	
feature-oriented	 approach,	 which	 spans	 a	 technology	 stack,	 was	 not	 applicable.	 What	 did	 work	 was	 a	
component	model,	where	each	bracket,	circuit,	chassis,	and	so	forth	was	represented	by	one	or	more	Technical	
Stories,	for	which	there	are	no	human	users.	

I	 introduced	 both	 User	 Stories	 and	 Technical	 Stories	 in	 the	 training,	 and	 Abid	 and	 I	 coached	 the	 teams	
through	writing	Stories.	Technical	Stories	resemble	User	Stories,	but	 lack	a	user	role.	The	Narrative	does	not	
describe	a	user	experience,	but	instead	describes	the	thing	to	be	developed.	The	Title	and	Acceptance	Criteria	
are	the	same	as	for	User	Stories.	

On	the	positive	side,	understanding	the	Story	format	and	writing	in	that	format	was	not	a	major	stumbling	
block.	 By	 and	 large,	 the	 new	 Scrum	 Team	 membership	 could	 do	 this.	 As	 I	 have	 seen	 in	 other	 hardware	
companies,	 the	 bulk	 of	 this	 Story	 writing	 was	 done	 by	 Team	 members,	 under	 the	 overall	 guidance	 of	 the	
Product	 Owner.	 This	 arrangement	 fell	 out	 naturally	 due	 to	 the	 highly	 technical	 nature	 of	 the	 Stories	 to	 be	
written.	

Challenges	 lay	 not	 so	 much	 in	 writing	 in	 the	 Story	 format	 as	 in	 becoming	 effective	 at	 identifying	
deliverables	of	 the	right	size,	suitable	 for	 implementation	 in	a	Sprint.	Also	difficult	was	 formulating	research	
Stories	 (“spikes”)	 whose	 outcome	 was	 not	 predictable,	 and	 whose	 results	 could	 change	 the	 direction	 of	
development	work	in	unknown	ways.	While	people	grasped	these	concepts	well	enough	in	the	abstract,	 they	
struggled	 in	practice	with	defining	 the	research	clearly,	and	staying	within	bounds	of	 the	 time	 they	chose	 to	
allocate	for	the	work.	These	difficulties	were	not	fully	resolved	during	the	course	of	the	engagement.	

3.3 Challenge:	Estimating	Work	
The	Planning-Poker	technique	from	the	training	worked	well	for	estimating	Stories,	as	long	as	the	units	were	
based	on	effort	(time),	and	not	Story	Points.		

The	 use	 of	 Story	 Points	 requires	 that	 all	 members	 of	 a	 Scrum	 Team	 can	 understand	 a	 set	 of	 reference	
Stories	in	the	same	way,	and	scale	their	concept	of	size	of	Stories	in	the	same	way.	For	this	to	be	possible	there	
must	be	significant	overlap	in	skills	across	the	team	members.	That	degree	of	overlap	does	not	happen	when	
the	 team	members	 are	 spread	 across	 the	 disciplines	 of	Mechanical	 Engineering,	 Electrical	 Engineering,	 and	
Firmware	 development.	 It	 is	 not	 possible	 to	 create	 a	 set	 of	 reference	 Stories	 that	 all	 team	 members	 will	
understand	well	enough	to	use	as	a	basis	for	Story	estimation.	

One	response	might	be	to	re-organize	as	single-discipline	teams,	but	that	is	no	more	desirable	for	hardware	
development	than	it	is	for	software	development.	It	is	better	to	have	product-oriented	teams	in	both	cases,	and	
this	means	we	need	an	alternative	to	Story	Points	that	can	be	understood	the	same	way	across	team	members.	

The	language	of	time	and	effort	is	understood	the	same	way	across	all	hardware	team	members	(and	I	find	
that	software	teams	often	prefer	it	to	Story	Points	as	well).	The	unit	of	measure	for	Stories	is	a	“Person-Day”	or	
“Man-Day,”	 which	 means	 eight	 hours	 of	 effort	 applied	 to	 a	 piece	 of	 work.	 Thus	 if	 someone	 votes	 a	 “2”	 in	
Planning	Poker,	the	number	means	that	all	work	done	on	the	Story,	added	up	across	all	Team	members	who	
work	on	 it,	 is	 two	Person-Days,	or	 sixteen	hours.	 (The	work	 for	each	Story’s	 tasks	 is	estimated	 in	hours	per	
task,	which	is	a	common	practice	in	Scrum	in	genera).	

Fortunately,	time-based	estimation	was	familiar	to	all	of	the	technical	people	at	Bird	Technologies,	and	the	
concept	posed	no	difficulties.	It	was	true	that	not	all	Team	members	could	provide	estimates	for	each	Story,	but	
enough	could	contribute	to	multiple	Stories	to	get	the	benefits	of	group	scrutiny.	

3.4 Challenge:	Forecasting	Velocity	
The	units	of	Velocity	must	match	the	units	of	Story	estimates,	which	were	Person-Days	for	these	teams.	In	this	
situation,	 the	 “Yesterday’s	weather”	approach	 is	 less	appealing	 than	a	 forecast	based	on	how	much	 time	 the	
Team	members	 can	 contribute	 to	 work	 in	 the	 Sprint.	 I	 helped	 them	work	 out	 this	 forecast,	 using	 a	 simple	
spreadsheet	model	for	how	much	time	each	Team		member	should	be	available	contribute	to	the	work	in	the	



Agile	Hardware	at	Bird	Technologies:	Page	-	4	
 

Sprint.	As	a	useful	bonus,	this	approach	also	clarified	how	many	hours	of	work	were	available	for	the	different	
specialized	skills	that	would	be	needed	in	the	company’s	two-week	Sprints.	

3.5 Challenge:	Scheduling	Stories	when	Lead	Times	are	Long	and	Parts	are	not	Reliable	
The	 dependence	 on	 physical	 components	 acquired	 from	 other	 vendors	 provided	 two	 complications	 for	 the	
schedule	of	work.	First,	the	time	from	ordering	to	receiving	parts	could	be	on	the	order	of	a	few	weeks.	Second,	
the	parts	might	not	be	acceptable,	or	have	characteristics	that	would	require	re-design	of	other	aspects	of	the	
product	under	development.	

The	first	problem	is	what	I	call	latency,	meaning	a	pause	in	the	middle	of	the	development	activity.	We	dealt	
with	latency	by	writing	Stories	to	encompass	the	work	up	to	placing	the	order,	and	Stories	about	what	to	do	
once	the	order	arrived.	The	point	is	to	avoid	letting	significant	latency	occur	within	the	scope	of	a	Story.	

The	second	problem	is	common,	and	generates	unplanned	work.	By	definition,	unplanned	work	cannot	be	
planned	 before	 the	 need	 for	 it	 appears.	 Dealing	 with	 unplanned	 work	 effectively	 is	 managed	 by	 some	
combination	 of	 buffer	 time	 in	 the	 schedule	 and	 scope	 reduction.	 (If	 this	 kind	 of	 disruption	 is	 common,	 I	
recommend	 Velocity	 buffering,	 meaning	 to	 plan	 less	 work	 per	 Sprint	 than	 the	 team’s	 ideal	 Velocity	 would	
predict.	Planning	to	70%	of	ideal	Velocity	provides	a	30%	buffer	for	unplanned	work).	

3.6 Challenge:	Sprint	Planning	
I	presented	a	common	two-part	Sprint	Planning	meeting	in	the	training.	Part	1	generates	a	draft	Sprint	Backlog	
based	on	 Story	 estimates,	 the	Velocity	 forecast,	 and	 any	other	useful	 insights.	 Part	 2	 completes	planning	by	
creating	a	Task	Breakdown	 for	each	Story,	and	using	 the	Task-level	effort	estimates	 (in	hours)	 to	create	 the	
final	plan	based	on	this	finer-grained	information.	

These	may	have	been	 the	 longest	 Sprint	Planning	meetings	 I	 have	 ever	 attended.	No	one	had	difficulties	
with	the	techniques,	but	simply	getting	through	each	meeting	took	about	five	hours.	

The	M2M	team’s	planning	session	took	a	long	time	because	they	had	a	large	number	of	small	Stories	(over	
twenty).	Planning	does	not	take	long	if	the	Velocity	forecast	is	twenty,	and	each	Story	has	an	estimate	of	five.	It	
takes	lot	longer	when	the	estimates	are	one	or	less.	

At	various	points,	I	asked	if	there	were	a	way	to	bundle	the	work	into	larger	pieces.	I	learned	that	this	might	
have	been	possible	to	some	extent,	if	we	could	have	started	over,	but	mostly	they	just	had	a	lot	of	little	things	
that	needed	to	be	done	that	were	fairly	independent	of	each	other.	That	would	not	be	the	case	for	every	Sprint,	
but	is	what	happened	with	this	one.	

The	RFIP	 team	had	 a	 different	 problem.	 They	 had	 a	 unique	 approach	 to	 planning	 out	 the	 tasks	 for	 each	
Story,	which	 I	had	never	seen.	 I	would	summarize	 it	as,	 “First	determine	all	 solutions	 that	cannot	work,	and	
then	put	what	remains	into	the	plan.”	

From	my	 perspective,	 they	 started	 on	 each	 Story	 by	 ruling	 things	 out,	which	made	 the	 discussions	 very	
long.	I	tried	to	get	them	to	start	with	what	was	likely	to	work,	rather	than	on	what	would	not,	but	to	little	effect.	
The	meeting	went	on	the	same	way.	

At	 least	 the	meeting	 did	 finish	with	 a	 reasonable	 plan.	 I	 hoped	 that	 the	 team	would	 become	 faster	with	
practice.	

3.7 Challenge:	Finishing	Planned	Work	
My	on-site	time	ended	after	the	teams	finished	planning	for	Sprint	1,	but	Abid	remained	to	coach	them	through	
the	 first	 three	Sprints.	The	 two	of	us	spoke	 frequently,	and	 I	monitored	 the	stream	of	Burndown	charts	 that	
came	from	the	two	Teams	over	time.	

We	place	great	emphasis,	in	Scrum,	on	planning	for	what	is	feasible,	and	not	taking	on	more	work	than	we	
can	be	reasonably	confident	of	finishing	in	a	Sprint.	There	are	many	good	reasons	for	this	policy,	ranging	from	
morale	to	having	good	insight	into	progress.	

New	 teams	often	plan	more	work	 into	 Sprints	 than	 they	 can	 actually	 accomplish,	 resulting	 in	Burndown	
charts	that	never	get	down	to	zero	hours	of	planned	work	remaining.	While	no	team	can	be	perfect	all	the	time,	
I	 generally	 expect	 that	 teams	 that	 are	 diligent	 about	 the	 various	 Scrum	 practices	will	 eventually	 be	 able	 to	
complete	their	planned	work	in	most	Sprints.	

Over	time,	the	M2M	team	did	show	a	trend	towards	improvement,	although	they	did	not	get	to	zero	work	
remaining	 at	 the	 end	 of	 the	 first	 three	 Sprints.	 There	was	 no	 single	 obvious	 reason	 for	 this	 difficulty,	 and	 I	
expected	progress	to	continue	as	the	team	matured.	

The	RFIP	team	was	a	different	story.	In	every	Sprint,	the	Team	put	more	work	into	their	Sprint	Backlog	than	
they	could	finish,	and	routinely	moved	unfinished	Stories	into	the	next	Sprint	from	each	Sprint	into	the	next.	At	



Agile	Hardware	at	Bird	Technologies:	Page	-	5	
 

one	point,	I	emailed	the	Scrum	Master	for	the	team,	asking	carefully	about	this	issue.	I	learned	that	he	and	the	
Team	members	 liked	 how	 things	 were	 going,	 and	were	 happy	 that	 they	 had	 improved	 their	 efficiency	 and	
“found	hours”	to	do	more	work	over	time.	I	would	have	preferred	a	greater	focus	on	keeping	planned	work	to	a	
level	they	could	routinely	complete,	but	at	least	they	were	functioning,	and	that	was	a	win	for	everyone.	

4. ADDITIONAL	INSIGHTS	

One	early	insight	discovered	during	the	adoption	of	Scrum	was	that	the	RFIP	team	was	extremely	bottlenecked	
by	 reliance	 on	 one	 person,	 who	 was	 overloaded	 as	 a	 result.	 This	 wasn’t	 surprising,	 but	 the	 greater	 clarity	
provided	by	the	Scrum	approach	made	this	point	much	clearer.	The	problem	was	not	one	that	could	be	solved	
instantly,	but	the	company	did	begin	taking	steps	to	resolve	the	problem	over	time.	

Another	early	insight,	which	the	M2M	team	addressed	effectively,	was	that	the	Product	Backlog	contained	
Stories	 from	 several	 different	 products.	 This	 mix	 diffused	 the	 team’s	 focus,	 and	 could	 have	 pushed	 out	
completion	dates	on	high-priority	work.	In	response,	the	Product	Owner	was	able	to	clarify	priorities	and	thus	
focus	the	team’s	resources	to	deliver	the	highest	value	to	the	company.	

The	 Backlog	 Refinement	 and	 Sprint	 Planning	 meetings	 made	 clear	 that	 people	 often	 had	 very	 different	
understandings	 of	 work	 to	 be	 done,	 without	 knowing	 that	 they	 differed.	 The	 emphasis	 on	 collaborative	
definition	 and	 planning	 of	 work	 paid	 off	 in	 generating	 a	 common	 understanding	 of	 work,	 and	 reduction	 of	
confusion	and	false	starts.	

5. AGILE	HARDWARE	MYTHS	VS.	REALITY	

The	myths	that	 I	 listed	at	 the	beginning	of	 this	paper	did	not	prevent	Bird	Technologies	 for	adopting	Scrum.	
The	resolution	of	the	various	problems	listed	in	those	myths	follows.	

5.1 The	Problem	of	Long	Lead	Times	
Long	 lead	 times	 are	 not	 unique	 to	 hardware	development,	 although	 they	 tend	 to	 occur	more	 often	 than	 for	
software.	A	four-week	lead	time	for	ordering	a	part	is	always	going	to	impact	the	development	schedule.	It	is	a	
common	source	of	latency,	meaning	a	pause	in	some	continuing	thread	of	activity.	

However,	 latency	 has	 no	 effect	 on	 the	 ability	 to	 complete	 Stories.	 Stories	 describe	 deliverables	 to	 be	
produced	by	the	team,	so	we	write	Stories	for	work	that	precedes	the	latency,	and	Stories	for	work	that	follow	
the	latency.	We	do	not	write	Stories	that	contain	large	latencies.		

Long	 lead	 times	occur	 in	any	kind	of	product	development.	The	approach	 to	dealing	with	 them	does	not	
changed	based	on	the	type	of	product.	

5.2 The	Problem	that	Development	of	Useful	Deliverables	Takes	more	than	One	Sprint	
This	 reality	 can	 lead	 people	 to	 believe	 that	 Stories	 cannot	 be	 completed	 in	 two-week	 Sprints.	However,	 the	
work	can	always	be	partitioned	into	smaller	deliverables	and	tested	to	ensure	that	they	are	as	desired.	It	may	
be	the	case	that	eight	weeks	are	required	to	produce	something	that	resembles	a	functioning	part	of	a	larger	
device,	but	that	is	a	different	topic.	

There	 is	 a	 common	Agile	mindset	 that	 can	 cause	problems	 in	 this	 area.	The	mindset	 is	 that	 every	Sprint	
must	produce	something	new	and	useful.	That	is	not	always	possible	in	software	development,	and	it	is	rarely	
possible	in	hardware	development.	While	the	goal	of	getting	usable	things	done	as	early	as	possible	is	a	good	
one,	it	is	a	mistake	to	try	to	require	that	a	usable	thing	be	completed	in	every	Sprint.	The	attempt	to	mandate	
this	 behavior	 leads	 to	 long	 Sprints	 that	 demonstrate	 the	 typical	 problems	of	 long	 Sprints,	 low	morale	 being	
among	them.	

Big	 things	 take	 substantial	 time	 to	 develop,	 and	 cannot	 be	 implemented	 in	 one	 Sprint.	 This	 is	 true	 for	
software	and	hardware	products,	and	does	not	limit	our	ability	to	work	in	two-week	Sprints	effectively.	

5.3 The	Problem	of	Implementing	Functionality	by	Vertical	Slices	across	Technologies	
User	Stories	describe	an	aspect	of	the	product	that	is	to	be	built	and	tested	by	the	team,	and	which	provides	a	
new	user	experience	in	the	product.	User	Stories	are	common	in	software	development,	but	there	are	always	
some	deliverables	that	teams	will	need	to	develop	that	do	not	provide	any	user	experience.	Examples	of	these	
include	 research	 (“Spikes”),	 infrastructure	 (upgrade	 or	 replace	 a	 third-party	 product	 on	which	 our	 product	
depends),	and	so	forth.	

I	 have	 long	 documented	 such	 non-user-oriented	 deliverables	 as	 “Technical	 Stories.”	 In	 terms	 of	 format,	
these	differ	from	User	Stories	in	lacking	a	role,	but	contain	all	of	the	other	standard	Story	elements.	



Agile	Hardware	at	Bird	Technologies:	Page	-	6	
 

Development	of	hardware	products	does	not	follow	the	software	pattern	of	implementing	functionality	as	a	
vertical	 slice	 across	 some	 set	 of	 technologies.	Hardware	products	 are	more	 component-oriented	 than	 layer-
oriented,	and	components	cannot	be	modified	 incrementally	with	affordable	cost.	Thus	Stories	become	more	
component-oriented	and	less	usage-oriented.	

The	 result	 is	 that	 hardware	 products	 have	 a	much	 higher	 ratio	 of	 Technical	 Stories	 to	User	 Stories	 than	
software	products.	In	my	experience,	for	software	and	hardware	products	both,	Product	Owners	mostly	write	
User	 Stories	 and	 the	Team	members	write	Technical	 Stories.	 This	 pattern	means	 that	Team	members	write	
most	 of	 the	 Stories	 for	 hardware	 products,	which	 is	 the	 reverse	 of	what	we	 expect	 for	 Story	 authorship	 in	
software	products.	

Thus	the	inability	to	develop	functionality	in	the	form	of	vertical	slices	across	technologies	does	not	imply	
that	Agile	techniques	cannot	be	used,	although	it	does	shift	the	balance	of	Story	types	and	authorship.	

5.4 The	Problem	of	High	Skill	Specialization	
The	 “generalizing	 specialist”	 concept,	where	most	 team	members	 can	 operate	 in	multiple	 skill	 areas,	 is	 not	
usually	 possible	 for	 hardware-development	 teams.	 Here	 again,	 dealing	 with	 this	 issue	 is	 not	 necessarily	
difficult,	but	the	patterns	differ	from	what	we	see	in	software	development.	

Specialization	impacts	Story	Estimation	and	Sprint	Planning	in	two	ways.		
1. Story	estimation	must	rely	on	time-based	units	(person-days)	rather	than	Story	Points.	
2. Sprint	 Planning	 often	 has	 to	 pre-assign	 work	 at	 the	 task	 level	 to	 Team	 members	 in	 the	 Sprint	

Planning	meeting,	 as	 specialization	means	 that	 Team	members	 cannot	work	 interchangeably	 on	
different	Stories.	This	differs	from	the	common	“swarming”	technique	where	most	people	can	work	
on	 most	 Stories,	 and	 can	 move	 from	 one	 Story	 to	 the	 next	 without	 pre-assigning	 work	 in	 the	
planning	meeting.	

	
As	long	as	we	take	into	account	the	impact	of	skill	specialization	on	how	work	is	estimated	and	planned,	it	

does	not	prevent	us	from	using	techniques	that	are	common	in	Scrum.	

6. CONCLUSIONS	

The	biggest	 conclusion	 I	draw	 from	this	experience	at	Bird	Technologies	 is	 that	Scrum	and	Agile	 techniques	
apply	as	well	to	hardware-product	and	integrated-product	development	as	they	do	to	software	development.	

The	 second-biggest	 conclusion	 is	 that	 success	 requires	 understanding	 the	 different	 characteristics	 of	
hardware	 and	 software	 development.	 This	 is	 not	 so	much	 hard	 to	 do	 as	 it	 is	 a	 challenge	 to	 learn	 for	 Agile	
experts	who	come	from	a	software	background.		

7. ACKNOWLEDGMENTS	

I	am	grateful	to	many	people	for	their	contribution	to	this	paper	and	the	work	at	Bird	Technologies.	
Abid	Akhtar,	for	his	participation	and	contributions	throughout	the	engagements	with	Bird	Technologies.	
John	Winter,	Terry	Grant,	and	Ann	Brooks	at	Bird	Technologies,	for	making	everything	happen.	
All	the	people	at	Cprime	whose	effort	makes	it	possible	for	me	to	go	to	clients	and	help	them.	
Steve	Adolph,	my	official	“shepherd”	for	the	Agile	Alliance	conference,	whose	patience	and	feedback	for	my	

various	drafts	is	much	appreciated.	
	
REFERENCES		
[1]	Takeuchi,	H.,	The	new	new	product	development	game,	Harvard	Business	Review	1986,	Vol	64,	Issue	1	
[2]	Thompson,	Kevin	W.		“Agile	Processes	for	Hardware	Development”	Cprime,	2015	
[3]	Thompson,	Kevin	W.		Solutions	for	Agile	Governance	in	the	Enterprise	(Sage):	Agile	Project,	Program,	and	Portfolio	Management	for	
Development	of	Hardware	and	Software	Products.	Sophont	Press,	2019	
	
	


