

Rachel Laycock @rachellaycock
Continuous Delivery Explained

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed. Workshop materials created by Jez Humble, Martin Fowler, Tom Sulston, Neal Ford & Rachel Laycock

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Delivering value
early and often

Release Cadence

“How long would it take your organization to
deploy a change that involves just one single

line of code?”

Mary Poppendieck Tom Poppendieck

“Can you do this on a repeatable, reliable basis?”

Release Cadence

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Continuous Delivery is BIG

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

Who are You?

QA

DBA

Developer

Manager

Operations

UX

BA

Agile Transformation

QA

DBA

Developer

Manager

Operations

UX

BA

Continuous Delivery

QA

DBA

Developer

Manager

Operations

UX

BA

Agile 101

Iteration 0 1 2 3 4

Analysis + Design

Development

Testing + Showcase

Integration + QA Release and operation

Customer

Centralized QA IT Operations

"Agile" team

The "last mile"

No matter how it looks at first, it's
always a people problem.

Continuous Integration
Integration early and often.

Everyone checks into trunk at least once a day.

0

300

600

900

1200

pa
in

time

Bring the pain forward.

eager vs. late

Continuous Integration

Fast, automated feedback on
the correctness of your
application every time there
is a change to code

Continuous

Integration
Integration early and often.

Everyone checks into trunk at least once a day.

Deployment

Deploy as the final stage of continuous integration.

Continuous

Integration
Integration early and often.

Everyone checks into trunk at least once a day.

Deployment

Deploy as the final stage of continuous integration.

Delivery
Software is always in a deployable state.

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

So what’s your plan?

Deployment Pipelines

Deployment Pipeline

Fast, automated feedback
on the production readiness
of your application every
time there is a change — to
code, infrastructure, or
configuration

production readiness

code infrastructure
configuration

Pipeline Construction

commit functional
test

user
acceptance test

staging …

increasing confidence in production readiness

artifact
respository

artifact
respository

artifact
respository

artifact
respository

Pipeline stages = feedback
opportunities

commit Stage
Commit stage

Compile
Unit test

Assemble
Code analysis

source code
commit tests
build scripts

deployable binaries
test reports
metadata

Version
control

Artifact
repository

Run against each check-in

Starts building a release candidate

If it fails, fix it immediately

UAT Stage
Acceptance test stage

Configure environment
Deploy and smoke test

Acceptance test
Tear down

acceptance tests
deployment scripts
configuration data test reports

metadata

Version
control

Artifact
repository

binariesArtifact
repository

End-to-end tests in production-like environment

Triggered when upstream stage passes

First DevOps-centric build

Manual Stage

UAT, staging, integration, production, …

Push versus Pull model

Deployments self-serviced through
push-button process

Later stages

Configure environment
Deploy and smoke test
Tear down on request

deployment scripts
configuration data

test reports
metadata

Version
control

Artifact
repository

binariesArtifact
repository

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

Machinery

www.thoughtworks.com/products/go-continuous-delivery

continuous integration ++

Pipeline Anti-patterns

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Performance
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

insufficient parallelization

ideal time: < 10 minutes

Pipeline Anti-patterns

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Performance
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

insufficient parallelization

Mingle:
3,282 test / 53
computers = ~1 hour

parallelize each stage as much as you
can

make your pipeline wide, not long

create more stages if necessary to
optimize feedback

Insufficient Parallelization
Heuristic:

Pipeline Anti-patterns

inflexible workflow

pipeline fans out
as soon as it

makes sense to do
so

keep everything you need to build, deploy,
test, & release in version control

• database creation,
upgrade, downgrade, and
initialization scripts

• application stack
configuration scripts

• libraries
• deployment scripts
• tool chains

• requirements documents
• test scripts
• automated test cases
• network configuration

scripts
• technical documentation

Principles
automate almost everything

Infrastructure Consistency

boxen.github.com

Identify & remove friction

Continuous Delivery Metrics
lead time

cycle time

the time between the initiation and completion
of a production process.

the total elapsed time to move a unit of work from the
beginning to the end of a physical process

Potential Hindrances

Lead time is too long

Last mile is too painful

Poor collaboration

Prerequisites

excellent automated testing at all levels

comprehensive
configuration management

continuous integration

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Continuous Delivery

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

Modern
software
is complex!

https://www.thoughtworks.com/insights/blog/implications-tech-stack-complexity-executives

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Testing

audienceeffort

feedback

Quadrants

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

functional
acceptance showcases

usability
exploratory

integration

unit nonfunctional acceptance /
quality of service

automated manual

automated manual/automated

su
pp

or
t p

ro
gr

am
m

in
g

critique project

technology facing

business facing

automated

Testing

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

functional
acceptance showcases

usability
exploratory

integration

unit nonfunctional acceptance /
quality of service

automated manual

automated manual/automated

su
pp

or
t p

ro
gr

am
m

in
g

critique project

technology facing

business facing

automated

unit

Testing Quadrants

Testingunit

optimize for the target audience

prefer pragmatism over dogmatic metrics

prefer test-driven to test-after development

how much time?

Common Anti-pattern

mixed unit/
functional tests

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

functional
acceptance showcases

usability
exploratory

integration

unit nonfunctional acceptance /
quality of service

automated manual

automated manual/automated

su
pp

or
t p

ro
gr

am
m

in
g

critique project

technology facing

business facing

automated

integration contracts
heartbeats

plumbing

Testing Quadrants

source: Brian Marrick, Continuous Delivery (Humble/Farley), with modifications

functional
acceptance showcases

usability
exploratory

integration

unit nonfunctional acceptance /
quality of service

automated manual

automated manual/automated

su
pp

or
t p

ro
gr

am
m

in
g

critique project

technology facing

business facing

automated

functional
acceptance

Testing Quadrants

To Cuke or not to Cuke…

BDD ≠

use when it provides useful
feedback to the target audience

http://www.thoughtworks.com/insights/blog/3-misconceptions-about-bdd

http://www.thoughtworks.com/insights/blog/3-misconceptions-about-bdd

Anti-pattern: Ice-cream Cone

Cupcake Anti-pattern

http://www.thoughtworks.com/insights/blog/introducing-software-testing-cupcake-anti-pattern

http://www.thoughtworks.com/insights/blog/introducing-software-testing-cupcake-anti-pattern

Avoiding Cupcakes

merge teams
when possible

collaborate
 work in sync
 cross-role pair programming
 story kickoff

test at the lowest level

agree on goals
and metrics

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Continuous Delivery

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

local
workstation

version
control

continuous integration
server

develop

53

version
control

continuous integration
server

build

54

version
control

continuous integration
server

build

55

version
control

continuous integration
server

build

56

version
control

continuous integration
server

build

everyone commits
to trunk at least

once a day

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

Feature Branching

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

Feature Branching

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

Feature Branching

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

Feature Branching

merge
ambush!

P1 P2

G2 G3G1 G4

P3 P4 P5

G5 G6

B1 B2

G1

G1

P1

P1
B1

P2

B1

P1-2

G2

G2

P3

G2

P3

B2

P4

B2

G3

P3
G3

G3

P4

P4 P5

P4-5

G4

G4 G5 G6

P2

Professor Plum

Reverend Green

Mainline

Continuous Integration removes the pain…

trunk-based development

P1 P2

G2 G3G1 G4

P3 P4 P5

G5 G6

B1 B2

G1

G1

P1

P1
B1

P2

B1

P1-2

G2

G2

P3

G2

P3

B2

P4

B2

G3

P3
G3

G3

P4

P4 P5

P4-5

G4

G4 G5 G6

P2

Professor Plum

Reverend Green

Mainline

P1 P2

G2G1

B1

B1

B1

P1-2

G1-2

G3 G4

P4

B2

P5

G5 G6

B2

P3-4

G3

B2

P3

Professor Plum

Reverend Green

Mainline

G1-6

P1-5

P1-5

G1-6

Continuous Integration

Feature Branch

Eager vs. late

[featureToggles]
wobblyFoobars: true
flightyForkHandles: false

Config File

<toggle name=wobblyFoobars>
 ... various UI elements
</toggle>

some.jsp

forkHandle = (featureConfig.isOn(‘flightlyForkHandles)) ?
 new FlightyForkHander(aCandle) :
 new ForkHandler(aCandle)

other.java

feature toggles

www.togglz.org

http://www.togglez.org

removed as soon as feature
decision is resolved

Feature toggles are purposeful
technical debt added to support

engineering practices like
Continuous Delivery.

build-time vs. run-time

Branch by
Abstraction

Application

New
Library

Library

Interface implements

Application

New
Library

Library

Interface implements

Application

New
Library

Interface implements

“Strangler” Pattern

 make something new that obsoletes a
small percentage of something old

 put them live together

 rinse, repeat

Release branches are OK…

Long-lived branches damage
continuous integration.

Release
Strategies

blue-green deployments

canary releases

dark launching

Release
Strategies

Incremental

blue-green
deployments

Message Router

Web server
Application

server
Database

server

Message Router

Web server
Application

server
Database

server

1.1 1.1 1.1

Message Router

Web server
Application

server
Database

server

1.1 1.1 1.1

Web server
Application

server
Database

server

1.2 1.2 1.2

Message Router

1.1 1.1 1.1

Web server
Application

server
Database

server

1.2 1.2 1.2

Message Router

1.1 1.1 1.1

Canary Releasing

Canary Releasing

Canary Releasing

reduce risk of release

multi-variant testing

performance testing

Canary Releasing

Dark Launching

timeline

Model

User interface

Model Model

Model

Model

Model Model

Model

User interface

Model

Model Model

Model

User interface

Model

User interface

Model Model

Model

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Continuous Delivery

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

persistent

bulky
impedance mismatch

complexity in data essential

refactoring

manual work

poor collaboration

late integration

complexity in data accidental

scripting all db changes incrementally

db refactoring

decouple db migration
from app migration

DB Evolution & Deployment

Continuous
Integration

for Databases

Prepare environment

version
control

commit
stage

commit
stage

acceptance
stage

Deploy app
service 1

service 2

test
double

Create dbs, apply schema

Add app reference data

Run acceptance tests
Test runner

acceptance
stage

DbDeploy Pattern

metadata in the database

db updates are code

small incremental deltas

fail fast

DbBeploy Tool

http://dbdeploy.com http://www.liquibase.org/ https://flywaydb.org

http://dbdeploy.com
http://liquibase.org
http://flywaydb.org

001_create_initial_tables.sql:

CREATE TABLE customer (
id BIGINT GENERATED BY DEFAULT AS IDENTITY (START WITH 1)
PRIMARY KEY,
firstname VARCHAR(255),
lastname VARCHAR(255)

);

002_add_customer_date_of_birth.sql

ALTER TABLE customer ADD COLUMN dateofbirth DATETIME;

--//@UNDO

ALTER TABLE customer DROP COLUMN dateofbirth;

use the same process everywhere

start with a clean database

apply changes incrementally

be comprehensive in change management

For DB CI We Need To:

Storage

auto-rollback if possible

run each delta in order

stop the line if one delta fails

record success in db metadata table

Apply Deltas

Refactoring Databases

app v230
compatible with db

v14

DB
version

15

DB
version

14

app v205
compatible with db

v13 and v14

app v234
compatible with db

v14

app v241
compatible with db

v14 and 15

DB
version

13

app v248
compatible with db

v15

Time

app v205
deployed

migrate
db to v14

app v230
deployed

app v234
deployed

app v234
deployed

app v248
deployed

migrate
db to v15

Decouple DB Updates:
the Expand/contract Pattern

Every change you
make must be

backward
compatible

dark launch db updates

long-running upgrades

abstraction layer in code or stored procs /
views

decouple db updates
Never tie DB
migrations to

application deploys

bring the pain forward

practice, practice, practice

fail fast

update engineering practices

refactor the db

DB Deployments Still Hard

Managing
Environments &
Infrastructure

The Pain of Operations

legacy applications

The Pain of Operations
heterogeneous platforms

The Pain of Operations

poor quality software thrown over a wall

The Pain of Operations

inordinate amount of firefighting

The Pain of Operations

conservative, process heavy

The Pain of Operations

huge budget for operations

Horror Stories

“bankrupt in 45 minutes”

dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

devs work in ops and carry
pagers

not it’s own silo, but a liaison between
operations and developers

at inceptions, showcases, retros

devs create more deployable
software

DevOps

autonomic (self-corrects to desired state)

infrastructure = environments and supporting
services (networking, vcs, storage, mail, dns...)

desired state specified in version control

state should be known through monitoring

Managing Infrastructure

Infrastructure as Code

definition files

self-documented
systems & processes

version all the things continuously test
systems & processes

small changes
over large batches

keep services available continuously

Destroy Works of Art

If someone threw a server out of the
window, how long would it take to

recreate it?

Tools

www.devopsbookmarks.com/

http://www.devopsbookmarks.com/

Tools

manage many systems

manage configuration

enforce consistency

treat infrastructure as
code

112

. . .

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Continuous Delivery

Organisational Alignment

Release Management

Architecture Quality
Assurance

Continuous
Integration

Configuration
Management

Data
Management

Environments
& Deployment

Microservices

production

Components are
deployed.

Features are released.

Applications consist
of routing.

Conway’s Law

“organizations which design systems ... are
constrained to produce designs which are copies

of the communication structures of these
organizations”

—Melvin Conway

Inverse Conway Maneuver

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

“team designs are the first draft of your architecture”

- Michael Nygard

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

…it isn’t the methodologies that succeed or
fail, it’s the teams that succeed or fail. Taking
on a process can help a team raise it’s game,
but in the end it’s the team that matters and

carries the responsibility to do what works for
them.

MARTIN FOWLER  
 (FLACCID SCRUM, 2009)

incorporate everyone into Continuous
Delivery practices

reduce friction

automate everything you can

continue to improve

measure success via cycle time

Continuous Delivery

Copyright (c) ThoughtWorks 2017. Provided for personal use only and not to be copied or distributed.

Thank you / Questions

