
What would it take for us to
move from “technical debt”
to “technical health”
Lessons learnt at Agile 2017 by Leon Maritz

Intro

We are going to talk about where the term technical debt came from.

Then what impact it has had.

What unforeseen problems the term created.

Why we should change to “Technical Health”.

What could help.

What is technical debt

10 min
On your experience with

Technical Debt

Definition

Ward Cunningham wanted to explain why he was refactoring the code for
WyCash - 25 years ago.

Debt

Speed

Burden

Agility

Ward on technical debt

Debt

I coined the debt metaphor to explain the
refactoring that we were doing on the WyCash
product. This was an early product done in
Digitalk Smalltalk, and it was important to me
that we accumulate the learnings we did about
the application over time by modifying the
program to look as if we had known what we
were doing all along and to look as if it had been
easy to do in Smalltalk.

The explanation I gave to my boss, and this was
financial software, was a financial analogy I
called "the debt metaphor". And that said that if
we failed to make our program align with what
we then understood to be the proper way to
think about our financial objects, then we were
gonna continually stumble over that
disagreement and that would slow us down
which was like paying interest on a loan.

Ward on technical debt

Speed

With borrowed money you can do something
sooner than you might otherwise, but then until
you pay back that money you'll be paying
interest.

I thought borrowing money was a good idea, I
thought that rushing software out the door to
get some experience with it was a good idea,
but that of course, you would eventually go back
and as you learned things about that software
you would repay that loan by refactoring the
program to reflect your experience as you
acquired it.

Ward on technical debt

Burden

I think that there were plenty of cases where
people would rush software out the door and
learn things but never put that learning back into
the program, and that by analogy was borrowing
money thinking that you never had to pay it
back.

Of course, if you do that, you know, say with your
credit card, eventually all your income goes to
interest and your purchasing power goes to
zero.By the same token, if you develop a
program for a long period of time by only adding
features and never reorganizing it to reflect your
understanding of those features, then eventually
that program simply does not contain any
understanding and all efforts to work on it take
longer and longer. In other words, the interest is
total -- you'll make zero progress.

Ward on technical debt

Agility

A lot of bloggers at least have explained the debt metaphor and
confused it, I think, with the idea that you could write code poorly
with the intention of doing a good job later and thinking that that
was the primary source of debt.

I'm never in favor of writing code poorly, but I am in favor of writing
code to reflect your current understanding of a problem even if that
understanding is partial.

You know, if you want to be able to go into debt that way by
developing software that you don't completely understand, you are
wise to make that software reflect your understanding as best as
you can, so that when it does come time to refactor, it's clear what
you were thinking when you wrote it, making it easier to refactor it
into what your current thinking is now.

In other words, the whole debt metaphor, let's say, the ability to pay
back debt, and make the debt metaphor work for your advantage
depends upon your writing code that is clean enough to be able to
refactor as you come to understand your problem.

I think that's a good methodology. It's at the heart of Extreme
Programming. The debt metaphor is an explanation, one of many
explanations why Extreme Programming works.

60%-90%
Development is on maintenance.

Banker & Software Technology Support Center [Banker 1991, 1993; STSC 2003]

What does it
cause?

● Slow releases

● Slow to market

● Code Re-writes

● Code translations

● Business distrust

● Project overruns

● Long onboarding

● Generally bad for developers

How is it seen from a financial point?

It is seen as an expense.

What impact does finance have on it?

When speaking to stakeholders and people responsible to
the investors. They would see the problem of technical debt
as a “bottom line problem”.

But it’s really a “ top line problem”

10 min
On what we as a community
can do about Technical Debt

What can we do.

Change the term in
everyday use.

Let us to move from using
“technical debt” to
“technical health”

Change it in financial
impact, log is as a Capital
expenditure.

There is a new updates to
Financial Accounting
Standards Board (FASB)

Final point
Let’s change the perception by

changing the term.

“Fear is the path to the dark side. Fear
leads to anger. Anger leads to hate. Hate

leads to suffering.”
- Yoda

Let’s work on our
“Technical health.”

Thanks!
Contact us:

Leon Maritz
leon@leonmaritz.com

