

Developers	and	Validators	Working	Remotely	Together	on	a	
Single	Kanban	Board 	
BECKY	BERNDT,	INTEL	CORPORATION	

Sharing	a	Kanban	board	is	a	great	start	to	get	teams	working	together	on	a	common	goal,	even	if	the	team	consists	of	people	in	different	
roles	such	as	developers	and	validators.	Collaboration	does	not	happen	automatically.	We	took	many	steps	to	not	just	get	everyone	using	
the	same	board,	but	everyone	working	towards	a	common	cycle	time	goal	of	14	days	from	start	to	fully	testing	a	work	item,	the	same	cycle	
time	that	was	nearly	a	year	long	at	the	start.	

1. INTRODUCTION	

Revolutionizing	the	world	of	memory	and	storage	as	we	know	it	today	takes	collaboration.	Being	on	the	cutting	
edge	means	shifting	timelines	left,	and	producing	high	quality	work	in	less	time.	Unfortunately	our	team’s	new	
development	was	taking	longer	than	expected	to	validate,	and	even	then,	not	thoroughly.	This	had	to	change	or	
we	would	never	be	ready	to	release	this	amazing	product.	

Developers	and	validators	needed	to	combine	forces,	cooperate,	and	work	towards	common	goals	in	order	
to	close	this	gap	and	stop	revisiting	code	that	was	written	as	much	as	a	year	ago.		

Our	team	needed	to	share	and	visualize	common	goals,	work	together	on	a	daily	basis	to	reach	those	goals,	
and	 needed	 a	way	 to	 know	 if	we	were	 succeeding.	We	 chose	 Kanban,	 a	well-known	 process	 used	 by	many	
agilists	to	visually	show	how	a	team	is	progressing.		

2. BACKGROUND	

I	am	blessed	to	be	a	software	engineer	working	on	the	manageability	code	for	Intel’s	recently	announced	3D	
XPoint™.	 It’s	exciting	 to	be	part	of	something	 that	will	 revolutionize	memory	 technology.	 It’s	crucial	 that	 the	
quality	be	outstanding.	Working	as	an	agile	scrum	team	to	shift	the	timeline	left,	it	was	important	to	have	clear,	
open,	 and	 often	 communication	 as	 requirements	 changed.	We	 needed	 to	 earn	 the	 right	 to	 continue	 calling	
ourselves	BSTEs	(Best	Scrum	Team	Ever,	but	we	pronounce	it	besties).	

We	developers	have	our	set	of	unit	tests,	but	appreciate	the	importance	of	a	full	blown	validation	suite	of	
tests.	However,	 it	was	unclear	how	much	was	covered	 in	our	 local	validation	team’s	tests,	and	the	validation	
team	 was	 unable	 to	 react	 when	 features	 or	 requirements,	 and	 thus,	 our	 code	 changed.	 So	 imagine	 our	
frustration	when	we	had	a	local	validation	team	that	was	not	open	to	taking	the	risk	and	trying	something	new	
by	joining	forces	and	becoming	one	cohesive	team.	

Fast	forward	after	a	restructure,	and	we	now	have	a	new,	but	remote,	validation	team.	We	knew	we	had	to	
set	 this	 up	 for	 success	with	 both	 sides	working	 closely	 from	 the	 beginning.	 It’s	 not	 how	 either	 the	 current	
development	team	or	the	new	validation	team	was	used	to	working,	and	the	validation	test	suite	they	inherited	
was	incomplete.	

3. MY	STORY	

I	have	been	a	software	engineer	at	Intel	for	6	years.	The	last	few	years	I	have	also	been	ScrumMaster	for	our	3D	
XPoint	 manageability	 software	 team	 located	 in	 Colorado.	 We	 used	 Scrum	 for	 our	 development	 for	 several	
years.	We	reached	a	point	where	I	felt	it	was	important	to	be	able	to	react	quicker	to	change.	A	little	over	a	year	

Becky	Berndt,	email:	BeckyBerndt@intel.com	
Copyright	2016	is	held	by	the	author.		

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	2	

ago,	I	took	a	brief	Kanban	session	during	an	agile	conference.	After	doing	a	little	more	research,	I	thought	it	was	
something	 that	 could	 work	 for	 us.	 Showing	 the	 expected	 benefits	 from	 incorporating	 Kanban	 practices	 to	
convince	my	team	lead	and	manager	to	allow	us	to	make	the	change	was	easier	than	I	expected.	They	could	see	
my	vision	and	were	 interested	 in	giving	 it	a	 try.	Almost	exactly	a	year	ago,	 just	a	couple	of	months	after	 the	
conference,	 it	was	 time	 to	start.	Never	having	 followed	Kanban	processes	before,	we	were	all	experimenting	
together,	which	turned	out	to	be	a	great	thing.	Already	having	our	work	items	in	Rally,	we	easily	set	up	our	new	
Kanban	states,	 created	our	acceptance	criteria	 for	each	column,	gave	some	Kanban	 flow	training,	and	off	we	
went,	still	figuring	some	of	it	out	along	the	way.	

We	 had	 a	 development	 team	 that	 worked	 well	 together	 for	 a	 couple	 of	 years	 on	 this	 project.	 We	 were	
disappointed	 with	 what	 we	 felt	 was	 a	 lack	 of	 collaboration	 with	 our	 local	 validation	 counterparts.	 The	
developer	group	and	the	validation	group	each	had	their	own	scrum	teams,	with	their	own	rituals,	and	 little	
crossover.	The	validation	group	was	invited	to	the	development	stand-up,	review,	planning,	and	retrospective	
meetings,	but	attendance	was	rare	and	communication	was	poor.	We	developers	had	no	idea	how	much	of	the	
code	was	getting	tested,	and	 felt	 like	 things	were	being	hidden	 from	us.	The	validation	group	was	 frustrated	
when	 specs	 and	 code	 behavior	 unexpectedly	 changed.	 We	 talked	 about	 it	 during	 stand-ups,	 but	 with	 few	
common	gatherings	the	communication	failed.	We	wanted	both	sides	to	be	on	the	same	team,	communicating	
and	planning	together,	giving	status	updates	together,	and	talking	about	priorities	together.	Unfortunately,	our	
attempts	 to	 get	 the	 local	 validation	 to	 join	 forces	 to	 achieve	 better	 collaboration	 failed.	 I’ve	 always	 told	my	
team,	“If	it	doesn’t	work,	we’ll	change	it.”	What’s	the	worst	that	could	happen?	We	fail	and	go	back	to	the	way	
we	used	to	do	things?		

About	9	months	ago,	after	a	team	restructure,	our	validation	work	was	transferred	to	a	new	validation	team	
across	the	globe.	There	was	an	eight	hour	time	difference.	They	were	new	to	our	team,	our	product	and	to	our	
agile	practices.	The	majority	of	existing	 functionality	had	no	associated	tests,	and	 tests	 that	did	exist	did	not	
run,	so	there	was	a	lot	of	work	to	be	done.	Given	the	history,	some	development	team	members	were	not	sure	
the	new	team	was	up	for	the	task	and	were	afraid	of	starting	all	over	with	a	new	group	of	validation	people,	not	
knowing	 anything	 about	 them,	 or	 what	 to	 expect,	 especially	 when	 they	 wanted	 to	 start	 with	 a	 whole	 new	
framework.	 Rumor	 had	 it	 the	 new	 validation	 team	was	 not	 capable	 of	 doing	 the	 job.	Needless	 to	 say,	 I	was	
concerned,	but	we	were	all	willing	 to	 take	 the	risk	 together.	Turned	out,	our	new	validation	team	was	eager	
and	willing	to	take	on	the	challenges.	That’s	the	last	time	I	listen	to	rumors.	

Joining	 forces	was	 great,	 but	 of	 course	 there	was	more	work	 to	 be	 done.	 As	we	 all	 know	 agile	methods,	
including	 the	Kanban	board	visual,	don’t	 fix	 issues,	 they	 just	make	 them	easier	 to	see.	Validation	 inherited	a	
test	suite	that	had	few	working	tests.	They	had	to	build	a	new	test	framework,	and	import	existing	tests	into	
this	framework,	had	many	tests	to	update,	and	many	more	to	implement.	This	all	needed	to	occur	while	they	
were	validating	new	work,	oh,	and	learning	what	the	heck	this	product	was	and	what	it	was	capable	of	doing.	

To	jump	start	the	new	team	members,	they	got	an	overview	of	the	product,	and	freedom	to	ask	anything,	
any	time.	This	premise	still	holds	true	today.	We	share	stand-ups	every	morning	with	the	entire	team,	so	we	
should	know	exactly	what	everyone	has	accomplished	and	what	they	may	be	stuck	on,	which	in	turn,	tells	the	
team	what	is	changing.		

The	merge	started	with	a	short	Kanban	process	training,	having	both	developers	and	validators	joining	in	
daily	stand-ups	and	retrospectives,	and	adding	‘test	in	progress’	and	‘test	done’	columns	to	our	Kanban	board.	
The	 ideal	Kanban	 flow	would	have	work	 items	 tested	and	accepted	before	 the	developer	pushes	code	 to	 the	
master	repository.	This	ensures	the	work	is	complete	and	correct,	and	practically	bug	free.	I	fully	believe	that	
once	we	get	 to	 this	point,	we	 should	have	no	new	bugs	 filed	by	our	validation	 team,	making	 the	 team	more	
efficient	and	saving	a	lot	of	time	fixing	defects	in	old	code.	The	code	changes	are	fresh	in	everyone’s	mind	and	
this	would	avoid	task	switching	back	and	forth	between	old	and	new	code	changes.	However,	as	I	mentioned,	
code	that	was	created	as	much	as	a	year	ago	is	what	was	currently	getting	tested,	so	we	had	a	long	way	to	go.	

It	has	been	difficult	to	change	the	thinking	that	we	are	no	longer	a	development	team	and	a	validation	team,	
but	we	are	one	 combined	 team.	 I	will	 say	 that	 again.	We	are	one	 combined	 team.	 If	 one	 fails	we	all	 fail.	We	
succeed	as	a	team.	

We	talked	about	having	developers	help	build	up	the	test	cases.	The	Poland	validation	team	includes	some	
contingent	 workers	 as	 well	 as	 Intel	 employees.	 	 Given	 the	 way	 things	 worked	 with	 contingent	 workers	 in	
Poland,	 and	 commitments	 the	 developers	 already	 had	 in	 place,	 it	 wasn’t	 an	 immediate	 option.	 Developers	
were,	 however,	 able	 to	 answer	 questions	 quickly,	 share	 documentation	 that	 is	 kept	 in	 a	 shared	 document	
repository,	 and	 teach	 feature	 behavior	 in	 order	 to	 help	 get	 the	 new	members	 of	 the	 team	 up	 and	 running	
quickly.	In	the	meantime,	in	order	to	allow	the	time	to	fill	in	missing	tests,	I	decided	to	have	an	initial	WIP	limit	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	3	

of	20	for	our	‘development	done’	and	‘test	in	progress’	columns.	High	enough	to	allow	some	wiggle	room,	but	
not	so	high	that	we	would	never	revisit	this	if	the	number	of	items	in	this	column	continued	to	increase.	
	

	Figure	1.	Modified	Kanban	Board	Combining	Development	and	Validation	

Our	 goal	 was	 always	 to	 have	 our	 developer’s	 code	 tested	 by	 the	 validation	 team	 before	 the	 code	 gets	
checked	into	our	master	repository.	This	would	keep	the	number	of	defects	down	and	developers	would	spend	
much	 less	 time	 task	 switching	 to	 revisit	 code	 that	 was	modified	weeks	 or	months	 ago	 now	 that	 they	 have	
moved	 on	 to	 other	 work	 items.	 In	 order	 to	 do	 this,	 our	 cycle	 time	 (days	 from	 ‘analysis	 in	 progress’	 to	
‘accepted’)	would	have	to	decrease….	a	lot.	With	3	week	integration	builds,	our	cycle	time	of	25+	days	starting	
with	the	new	team	was	just	not	going	to	cut	it.	We	were	ready	to	accept	a	week	in	development	and	a	week	in	
test	as	the	most	time	any	work	item	should	take.	So,	for	many	months	our	cycle	time	goal	was	14	days.	We	also	
knew	that	our	cycle	time	would	get	bigger	before	it	got	smaller,	since	we	added	the	validation	acceptance	as	
part	of	the	flow.		

Initially	it	was	hard	for	validation	to	keep	Kanban	work	items	up	to	date	because	everything	happened	so	
fast.	Developers	were	implementing	features	and	fixing	defects,	while	requirements	were	changing.	Validation	
was	new	to	the	process	and	didn’t	want	to	flood	the	Kanban	board	with	stories	such	as	completely	redoing	the	
test	 framework	 and	updating	 tests,	 so	 they	 kept	work	 items	 off	 the	 shared	board.	 They	 felt	 that	 since	 their	
items	were	unrelated	to	development	work	at	the	time,	it	didn’t	add	anything	useful	for	the	overall	process	and	
they	 should	not	 clutter	up	 the	Kanban	board.	 	 I	 think	 it	would	have	been	better	 to	have	 these	 items	on	 the	
board	for	full	transparency,	a	better	understanding	of	what	the	teams	were	up	to,	as	well	as	potential	places	for	
other	team	members	to	jump	in	and	help.	We	now	put	all	validation	work	items,	including	items	that	have	no	
development	 impact,	 and	 all	 development	 work	 items,	 including	 those	 with	 no	 validation	 impact,	 on	 the	
Kanban	board	for	all	to	see.		

4. PROBLEMS	

The	eager	new	validation	team	and	re-energized	development	team	became	one	manageability	unit.	Both	sides	
happily	 jumped	 into	stand-ups	and	retrospectives.	Problem	solved,	 right?	Everything	we	have	been	doing	as	
BSTEs	(“besties”,	or	Best	Scrum	Team	Ever)	is	perfect,	right?	Well…	

As	expected,	things	were	a	bit	bumpy	at	first.	We	had	a	few	obstacles	right	away.	There	was	now	an	8	hour	
time	difference.	Validation	had	a	small	team	and	their	leadership	kept	changing.	They	had	to	continue	to	launch	
the	existing	test	suite	on	the	old	framework	while	bringing	the	new	framework	up-to-date.	The	existing	tests	
needed	 to	 be	 pulled	 into	 the	 new	 framework	 and	 fixed,	 so	 no	 immediate	 improvement	 on	 the	 gap	between	
development	and	test	of	a	new	feature	was	realized.	

There	was	confusion	on	priorities.	Development	priorities	were	not	always	the	same	as	validation.	We	had	
one	Product	Owner	so	priorities	were	expected	to	match.		

Working	cultures	were	different.	It	was	hard	to	break	down	the	barrier	of	“it	 is	our	job	to	do	…”,	or	“they	
should…”	In	fact,	we	still	hear	that	coming	up	now	and	then.	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	4	

5. GETTING	EVERYONE	INVOLVED	

We	kept	our	3-week	sprint	cycle	and	retrospectives	after	incorporating	Kanban,	which	proved	to	be	important.	
Our	team’s	practice	 for	over	a	year	has	been	to	have	a	different	member	 lead	the	retrospective	at	the	end	of	
each	sprint.	The	new	team	members	 jumped	right	 in.	Retrospective	 leaders	can	search	 for	 techniques	or	get	
creative	 and	 make	 up	 something	 fun.	 It	 is	 sometimes	 hard	 to	 keep	 the	 attention	 of	 creative	 people	 in	 a	
retrospective,	but	our	team	rocks	at	coming	up	with	these.	We	have	to	watch	our	time,	as	we	often	run	out	of	
time	since	we	are	so	involved	in	the	game.	Having	varied	techniques	for	retrospectives	means	pulling	various	
types	of	 ideas	and	 information	 from	the	 team.	For	 instance,	 the	 “What	 I	know,	 I	don’t	know”	 focused	on	 the	
team’s	knowledge	base	around	the	product,	procedures,	development	and	release	plans,	etc.	This	fired	off	a	set	
of	 bi-weekly	 team	 sessions	 for	 sharing	 the	missing	knowledge.	The	 “Worst	Possible	 Situation”	 retrospective	
was	a	 fun	exploration	of	what	the	worst	possible	outcome	of	our	next	stack	 integration	would	be.	We	talked	
about	cats	getting	into	the	lab	and	knocking	things	over,	causing	a	meltdown	of	the	entire	city,	and	black	holes.	
Granted,	not	likely,	but	fun	for	the	team,	and	did	actually	make	us	look	deep	into	a	part	of	the	code	that	could	
be	made	more	secure.	During	the	“Breakup	Letter”	retrospective	we	each	wrote	a	break-up	letter	to	something	
we	dreaded	doing	or	was	inhibiting	progress.	This	allowed	us	to	vent	and	focus	on	ways	to	speed	things	up	or	
improve	a	process	or	action.	Let’s	 just	say	some	people	are	a	bit	colder	than	others	with	their	breakups.	One	
team	member’s	 original	 version	 of	 “Apples	 to	 Apples”	 allowed	 for	 some	 creative	 releases	 in	 a	 fun,	 slightly	
competitive	game	while	still	leaving	with	some	good	actions	on	ways	to	improve.	Several	others	pointed	us	to	
process	 changes	 to	 get	more	 communication	 going	during	 the	 analysis	phase	 to	make	 sure	 everyone	 agrees	
what	it	means	for	a	specific	work	item	to	be	done,	eliminating	confusion	and	reworking	the	item	at	the	end	of	
the	cycle.		

We	tracked	cycle	time	each	sprint	and	reviewed	statistics	during	our	retrospectives	as	well	as	came	up	with	
team	agreed	practices	to	help	reduce	cycle	time.		

	

	
Figure	2.	Cycle	Time	Goal	Agreement	

It	was	no	 surprise	 that	 our	 cycle	 time	 increased	before	 it	 decreased.	Our	 average	 sprint	 cycle	 time	went	
from	10	 to	28	 to	60	days	over	a	4	month	period.	We	understood	 this	was	because	 tests	were	being	written,	
frameworks	were	being	put	 into	place,	and	we	are	now	measuring	through	the	validation	acceptance	for	the	
first	 time.	Some	of	 the	stories	 that	were	on	 the	Kanban	board	when	we	combined	 forces	were	now	working	
their	way	off	the	board.	We	continued	to	review	cycle	time	and	talk	about	ways	to	decrease	it,	including	being	
sure	story	sizes	were	reasonable.	At	the	time	the	new	validation	team	joined,	developers	were	making	changes	
to	a	complicated	feature	using	various	work	items	to	track	these	changes.	Validation	was	using	one	work	item	
to	create	all	the	tests	for	this	complicated	feature,	and	it	turned	out	to	be	a	much	bigger	job	than	expected	and	
could	not	be	completed	in	a	single	sprint,	or	even	several	sprints,	so	the	item	sat	in	one	place	on	the	Kanban	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	5	

board	 for	 several	 sprint	 cycles.	 Splitting	 user	 stories	 helped	 us	 better	 see	 actual	 progress	 by	 having	 the	
combined	work	 items	move	across	the	board	again	on	a	regular	basis.	Seeing	 items	moving	to	the	 ‘accepted’	
column	is	also	great	for	the	team	morale.	There	is	an	excitement	people	feel	while	dragging	their	work	items	to	
the	‘accepted’	column.	

We	struggled	with	communication	around	acceptance	criteria.	That	is,	what	does	it	really	mean	for	a	work	
item	to	be	done.	If	development	and	validation	are	not	in	sync,	the	result	will	be	defects	filed	for	unexpected	
behavior.	We	started	out	by	talking	about	work	items	after	stand-up	as	they	were	pulled	into	the	‘analysis	in	
progress’	 column,	 and	 adding	 the	 agreed	 upon	 criteria	 to	 the	 work	 item	 description.	 This	 was	 hard	 to	 do	
without	being	able	to	research	the	story	first,	and	people	did	not	want	to	stay	after	stand-ups	for	this.	We	then	
allowed	them	to	take	the	responsibility	of	getting	it	done	outside	of	team	meetings.	This	didn’t	seem	to	always	
happen	and	we	 still	 ended	up	with	questions	when	 it	 came	 time	 for	 testing,	 sometimes	 causing	defects	 and	
rework.	 We	 then	 moved	 to	 requiring	 a	 template	 with	 more	 information	 to	 be	 included	 in	 the	 work	 item	
description	before	 it	can	be	pulled	 into	 ‘analysis	done’.	Details	 include	the	expected	behavior	once	this	work	
item	is	complete,	as	well	as	both	a	validation	and	a	development	person	signing	off	in	agreement.	This	at	least	
forced	some	kind	of	conversation,	but	we	still	seemed	to	miss	the	purpose	of	the	conversation,	and	that	is	to	
look	at	what	must	change	 for	 this	particular	work	 item,	and	what	 the	ending	behavior	will	be,	agreed	on	by	
everyone.	This	made	 it	a	 little	easier	 to	see	 that	 the	discussions	happened,	as	well	as	knowing	the	 impact	 to	
each	side,	if	any.	When	this	got	done,	it	worked	well.	When	it	didn’t	there	was	once	again	confusion	when	we	
got	 to	 the	 testing	 phase.	 Remember,	 the	 code	 was	 already	 checked	 into	 the	 master	 repository,	 so	 when	
questions	 and	 issues	 arose,	 defects	were	 filed	 since	 developers	 had	 already	moved	 on	 to	 other	work	 items.	
Let’s	face	it.	We	tend	to	focus	on	what	the	current	priority	or	work	at	hand	is,	so	getting	stories	analyzed	that	
you	won’t	work	on	for	a	month	or	reviewing	defects	for	something	you	did	a	month	ago	is	not	top	on	our	lists.	
We	still	get	defects	 filed	due	to	 lack	of	communication	on	the	agreed	upon	expected	behavior	once	the	work	
item	is	completed,	or	because	a	work	 item	was	not	analyzed	completely.	All	 the	more	reason	to	require	that	
code	is	verified	before	it	is	checked	into	the	repository.		

When	 the	 team	was	 smaller,	 a	 15	minute	 stand-up	 was	 often	 enough	 time	 to	 ask	 questions	 along	 with	
talking	about	accomplishments	and	plans.	As	 the	 team	size	grew,	we	 just	couldn’t	 cover	 it	all	 in	15	minutes,	
anymore.	However,	immediately	after	stand-up	became	a	great	time	to	hold	discussions.	In	person	discussions,	
or	over	the	phone	seemed	to	get	the	quickest	responses.	However,	sometimes	we	needed	more	details	on	the	
system	setup,	and	email	worked	just	fine	for	that.	We	also	used	to	allow	stand-ups	to	run	5	minutes	overtime	
as	we	were	getting	started,	but	decided	to	curb	the	discussion	and	keep	the	15	minute	time	limit	 in	order	to	
keep	them	short,	and	to	allow	some	team	members	to	attend	their	next	meeting	without	having	to	leave	while	
discussions	are	still	happening	during	our	team	stand-up.	

The	exception	to	discussing	work	item	details	during	stand-up	is	for	those	that	have	been	color	coded	hot	
pink	 or	 have	 discussion	 notes	 added	 in	 CA	Technologies	 (formerly	Rally).	 These	 can	 be	 color	 coded	 by	 any	
team	member	for	various	reasons.	Perhaps	it	is	a	high	priority	item,	it	has	been	on	the	board	a	long	time	and	
we	need	to	get	it	moving,	or	it	is	missing	analysis	information	but	somehow	got	moved	across	the	board.	Once	
everyone	gives	their	accomplishments	and	plans,	these	are	up	for	discussion	during	the	remainder	of	stand-up,	
if	there	is	time.	If	time	runs	out,	they	are	welcome	to	stay	on	the	call	longer	to	get	these	discussed.	

Mornings	 are	 prime	 time	 on	 the	 Colorado	 side.	 There	 is	 a	 short	 window	 between	when	we	 can	 get	 US	
people	into	the	office	in	the	morning,	and	the	time	Poland	people	leave	at	the	end	of	their	day.	This	is	when	we	
hold	our	stand-ups	(Monday-Thursday),	and	this	is	when	the	majority	of	our	discussions	happen.	We	respect	
Poland’s	 Friday	 evenings	 and	 choose	 to	 not	 hold	 stand-ups	 on	 Fridays.	 Convincing	 some	US	 people	 to	 start	
their	day	earlier	was	not	easy.	As	a	team,	we	initially	decided	to	start	stand-ups	a	little	earlier	than	normal.	A	
few	months	 later,	after	a	 team	member	and	manager	attended	a	retrospective	 from	Poland,	hungry	and	past	
dinner	 time,	we	 decided	 to	 start	 retrospectives	 even	 earlier.	 Coming	 in	 early	 once	 every	 3	weeks	 is	 totally	
doable,	and	keeps	the	Poland	side	from	staying	late	into	their	evening.	Our	validation	folks	are	troopers.	They	
never	complained.		

Even	 though	 we	 started	 sharing	 stand-ups	 and	 retrospectives,	 it	 is	 sometimes	 difficult	 to	 get	 to	 know	
remote	team	members,	when	you	only	 talk	as	a	 team	for	15	minutes	or	so	each	day.	We	started	using	video	
conferences	 for	our	retrospectives,	allowing	us	 to	get	 to	know	each	other	better	by	seeing	 the	way	the	 team	
members	work	with	 each	other,	 and	being	 able	 to	 see	 the	 facials	 and	 the	 energy	on	 the	 screen.	This	makes	
retrospectives	so	much	more	entertaining	and	helps	bond	the	entire	team.	Since	the	video	conference	rooms	
are	 in	 different	 buildings	 on	 both	 the	 Colorado	 and	 Poland	 side,	 and	 they	 cannot	 be	 reserved	 for	 just	 15	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	6	

minutes,	it	is	not	practical	to	use	them	for	our	stand-ups,	but	I	am	working	on	other	ways	to	incorporate	video	
into	our	stand-ups.	

Spreading	 the	 knowledge	 has	 also	 helped	 decrease	 cycle	 time.	 The	 developers	 have	 the	 philosophy	 that	
anyone	should	be	able	to	pick	up	the	next	most	important	work	item	and	be	successful,	regardless	in	what	part	
of	 the	 code	 the	 change	 is	 needed.	 Validation	 initially	 assigned	 certain	 people	 to	 test	 specific	 pieces	 of	 the	
manageability	 application.	 They	 found	 it	 helpful	 and	 freeing	 to	 start	 sharing	 the	 knowledge	 of	 the	 various	
pieces	throughout,	so	things	are	not	held	up	if	there	are	4	items	to	be	tested	in	one	level	of	the	application,	and	
none	in	another.	They	now	can	also	pick	up	the	highest	priority	work	item	to	validate,	regardless	of	where	in	
the	code	it	happens	to	be.	

Our	Product	Owner	started	holding	a	weekly	sync	meeting	with	the	technical	leads	to	be	sure	all	priorities	
were	aligned.	In	addition	to	getting	everyone	in	sync,	we	are	also	able	to	coordinate	and	pull	in	defects	that	are	
blocking	 a	 lot	 of	 validation	 tests	 onto	 our	 Kanban	 board	 to	 be	 fixed	 sooner	 rather	 than	 later,	 unblocking	
validation	tests,	which	results	in	quicker	acceptance	of	stories.	

6. ARE	WE	THERE	YET?	

I	was	just	about	to	give	up	on	our	14	day	cycle	time	goal,	thinking	there	was	no	way	we	could	hit	this	since	our	
27	day	cycle	 time	 increased	to	60	days	and	our	team	makeup	had	changed	several	 times.	However,	patience	
and	persistence	paid	off.	After	some	team	changes	and	not	checking	for	a	couple	of	sprints,	with	the	help	of	a	
teammate,	 I	 put	 together	 a	 scatter	 chart	 showing	 cycle	 times	 for	 each	 completed	work	 item,	 differentiating	
between	new	work	and	defects.	We	were	all	surprised	to	see	an	average	sprint	cycle	time	of	15.32	days.	We	
could	see	that	our	cycle	time	per	work	item	was	getting	more	consistent,	with	the	exception	of	a	few	outliers.	
Still	not	quite	where	we	want	to	be	but	so	much	better.	Now	the	challenge	was	to	figure	out	what	we	could	do	
to	get	even	more	consistent.	
	

	
Figure	3.	Cycle	Time	Scatter	Chart	

One	of	the	items	in	discussion	today	is	that	attention	to	analysis	details	is	still	not	being	recognized.	Email	is	
not	 answered	 quickly	 when	 the	 subject	 is	 not	 in	 the	 radar	 of	 the	 recipient.	 We	 are	 either	 not	 having	 the	
complete	discussions	around	expected	behavior	once	the	work	item	is	complete,	or	the	affected	teams	are	not	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Cy
cl
e	
Ti
m
e	
in
	D
ay
s	

End	of	Sprint	Date	

2016	Cycle	Time		

Goal	 User	Story	 Defect	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	7	

fully	understanding	the	impact	on	code	or	tests.	There	are	still	questions,	and	even	story	blockages,	happening	
in	the	right	side	of	the	Kanban	board	for	things	that	should	have	been	caught	earlier.	

We	are	already	committed	to	some	current	user	stories,	but	now	have	set	a	date	after	these	commitments	
should	be	complete	from	which	going	forward	we	will	not	allow	code	to	be	checked	into	our	master	repository	
until	 it	 is	 tested	by	both	development	unit	 tests	and	validation	test	suites.	 	This	should	 force	more	thorough	
discussions	during	the	analysis	phase,	before	checking	in	code,	and	should	avoid	any	new	defects	since	nothing	
will	get	checked	in	until	it	passes	both	sets	of	tests.		

	

	
Figure	4.	Future	Kanban	Board	Requiring	Test	Acceptance	Before	Code	Check-in	

After	this	date	we	will	take	only	the	highest	priority	code	change	requests,	and	instead	spend	time	cleaning	
up	 our	 defects	 and	working	 on	 some	 development	 code	 or	 build	 process	 improvements.	 By	 looking	 at	 our	
scatter	chart,	we	noticed	that	defects	seem	to	have	shorter	cycle	times	than	user	stories,	which	makes	sense.	
Most	of	 the	defects	are	 filed	by	validation	so	tests	 likely	already	exist	 for	 them	so	there	should	be	 little	 time	
between	modifying	code	for	a	defect	fix	and	being	able	to	actually	test	and	accept	it.	This	should	help	shorten	
the	time	between	when	an	item	in	‘development	done’	can	be	moved	to	the	‘accepted’	column.	We	have	some	
logistics	to	work	out	on	how	to	handle	builds	for	this,	but	I	am	confident	that	this	amazing	team	will	find	a	way	
to	make	it	work,	as	usual.		

As	of	May,	the	gap	between	development	completing	a	work	item	and	validation	picking	up	that	same	work	
item	was	about	1.5	(3-week)	sprints.	So	much	closer	than	a	year,	but	we	still	need	to	do	something	to	shorten	
that	time	gap.	It	is	hard	to	break	down	the	barrier	of	“it	is	our	job	to	do	<xyz>”.	If	developers	cannot	help	by	
designing	tests,	which	one	could	argue	is	not	a	good	idea	since	the	tests	will	work	just	like	our	code,	there	are	
things	developers	can	do.	They	can	be	there	to	answer	questions,	and	speed	the	knowledge	transfer	with	rapid	
style	 communication	 such	 as	 video	 or	 over	 the	 phone.	 The	 decision	we	made	 is	 to	 stop	 new	 development,	
beginning	on	a	 specific	date	after	our	 current	 commitments	are	 complete.	We	will	 accept	only	a	 critical	 few	
code	 change	 requests,	 and	 just	 work	 on	 defects	 and	 some	 items	 to	 improve	 the	 development	 process	 that	
would	have	no	 impact	on	validation.	We	plan	 to	do	 this	 for	2	sprints	giving	validation	 time	to	develop	more	
tests	without	being	bombarded	with	more	rapid	changes.	

I	have	created	physical	team	Kudos	boards	that	are	displayed	both	in	Colorado	and	in	Poland.	This	is	where	
team	 members	 can	 thank	 another	 person	 for	 helping	 them	 with	 something,	 showing	 appreciation,	 or	
congratulating	 a	 team	member	 for	 a	 job	well	 done.	 I	 will	 admit	 it	 is	 difficult	 to	 form	 new	 habits,	 but	 I	 am	
enjoying	posting	 to	 it,	 and	people	always	enjoy	 reading	 that	 something	 they	did	was	meaningful	 to	another.	
Team	members	are	slowly	following	my	example	and	posting	kudos	cards	of	their	own.	I	am	hoping	this	board	
gets	used	by	other	teams	in	our	location,	and	can	become	a	building-wide	kudos	area.	Everyone	likes	to	know	
that	they	are	appreciated.	

	

Developers	and	Validators	Working	Remotely	Together	on	a	Single	Kanban	Board	-	8	

	
Figure	5.	Colorado	Kudos	Board	

I	 am	 also	 starting	 to	 look	 into	 trying	 some	 lean	 techniques	 that	 may	 work	 with	 our	 current	 processes.	
Always	looking	to	improve	the	way	we	work,	but	I	guess	that’s	a	paper	for	another	time.	

7. WHAT	WE	LEARNED	

Communication	is	the	key.	The	more	we	increased	communication,	the	smoother	things	went,	and	the	closer	
we	got	 to	our	goals.	Communication	 for	us	 takes	place	 in	daily	stand-ups	retrospectives,	knowledge	sharing,	
phone	calls,	IM,	and	emails.	Real	time	communication	gets	the	quickest	answers,	and	using	the	time	just	after	
stand-ups	is	important	because	of	the	time	difference.		

Our	window	of	shared	work	hours	is	minimal,	and	we	need	to	take	full	advantage	of	the	common	working	
hours.	 Our	 team	 respects	 each	 other,	 and	 for	 that	 I	 am	 thankful.	 I	 pay	 close	 attention	 to	 be	 sure	 the	 same	
respect	 is	 given	 to	 all	 members,	 and	 we	 are	 sure	 to	 include	 the	 remote	 team	members	 in	 discussions	 and	
decisions.	They	are	important	in	the	success	of	our	product.	

Breaking	 stories	 into	more	manageable	 sized	pieces	 allows	 for	 smaller	 code	 reviews,	 and	 validation	 test	
updates	 at	 one	 time.	 Smaller	work	 items	 take	 less	 time	 to	 complete,	 which	 keeps	 items	moving	 across	 the	
Kanban	Board.		This	keeps	team	members	from	being	tied	to	a	single	story	for	too	long	which	allows	the	team	
to	more	quickly	react	to	priority	changes.	

Retrospectives	continue	to	be	valuable.	We	acknowledge	the	challenges	 in	a	 fun	way	that	keeps	the	team	
involved,	then	we	dig	into	a	few	selected	challenges	and	find	ways	to	overcome	them.	

We	don’t	 just	 share	 a	Kanban	board.	We	 also	 share	work	 items.	Developers	 and	 validators	 analyze	 each	
work	item	together,	and	both	sides	may	have	tasks	on	the	same	work	item.		

We	 share	 resources	 such	 as	 specs,	 requirements,	 and	 best	 known	 methods	 in	 a	 common	 location.	 Our	
codebases	and	builds	are	available	to	the	entire	team.	

8. ACKNOWLEDGEMENTS	

Thank	you	to	my	manager,	Denise	Vitt,	who	has	shown	confidence	 in	me	and	allowed	me	the	opportunity	to	
lead	the	team	as	we	take	risks	by	adjusting	our	processes	on	a	regular	basis,	as	well	as	having	encouraged	me	
to	 submit	 this	 paper.	 Thank	 you	 to	 our	 architect	 and	 product	 owner,	 Tiffany	 Kasanicky,	 for	 not	 only	
introducing	me	to	agile	processes	when	I	first	joined	Intel,	but	also	being	there	to	bounce	ideas,	and	help	keep	
the	 team	 moving	 in	 the	 right	 direction.	 Thank	 you	 to	 my	 entire	 team	 for	 being	 BSTEs,	 for	 being	 great	
communicators,	and	for	always	being	willing	to	jump	in	and	get	involved	in	order	to	better	ourselves	and	our	
product.	Thank	you	to	my	shepherd,	Rebecca	Wirfs-Brock,	for	her	encouragement,	valuable	insights,	and	quick	
feedback.	You	helped	me	organize	my	thoughts	and	not	stress	out,	which	 is	why	 I	was	able	 to	complete	 this	
paper.	
	
	

