

6	days/week	with	20hr	of	engineering/day	and	multiple	
releases	in	one	day	-	Yahoo	Search 	
YUKARI	HASEBE,	Yahoo!	
MAI	LE,	Uber	

Enterprise	distributed	agile	model	 sounds	very	hard	and	complicated.	Yes,	 it	 is	not	easy	but	 there	are	ways	 to	make	 it	work.	When	we	
joined	the	Yahoo	Web	Search	team,	we	inherited	distributed	teams	working	in	a	traditional	development	style	with	SE	and	QE	located	in	
Bangalore,	Engineers	in	Taiwan,	and	Products	in	US.	Our	Agile	transition	started	with	a	process	change	from	distributed	traditional	model	
to	distributed	agile	model.	Our	team	was	able	to	come	up	with	a	working	model	where	we	can	release	minimum	of	six	days	in	a	week	with	
more	than	twenty	hours	of	work	hours	a	day	between	US	and	TW	office.		

1. INTRODUCTION	

When	 we	 joined	 Yahoo	 Search	 team,	 we	 started	 from	 just	 two	 of	 us	 (Engineering	 Director	 and	 Program	
Manager)	in	the	US,	and	engineering	teams	in	Jordan	and	India.	Yahoo	Search	is	a	very	big	organization	within	
Yahoo,	we	own	Yahoo	Search	Box,	 the	Search	Result	Page,	partner	 syndication,	 toolbar,	browser	extensions,	
and	all	backend	processes	such	as	ads	federation,	content	selection	such	as	wiki,	local	store	listing,	images	then	
ranking	and	slotting	 information	to	 the	right	place.	Mai	was	 in	charge	of	all	aspects	of	engineering	 including	
resource	planning,	 hiring	 and	 training	 on	 top	 of	 product	 delivery.	 I	was	 in	 charge	 of	 portfolio	management,	
setting	up	 the	 team	structure	and	process,	 and	 coaching	with	an	emphasis	on	quality.	A	 few	years	 later,	we	
have	 self-organized	 and	 high	 performance	 teams	 located	 in	 both	 US	 and	 Taiwan.	 There	 were	 multiple	
organizational	 changes	 during	 this	 time.	 Regardless	 of	 multiple	 challenges	 to	 overcome,	 now	 our	 team’s	
productivity	has	improved	to	6	days	a	week	of	engineering,	averaging	20	hours	a	day	with	CI/CD.		

2. BACKGROUND	

Yahoo	 is	 a	 very	 interesting	 place	 to	 work.	 We	 are	 known	 for	 many	 different	 reasons	 but	 Yahoo	 Search	
generates	a	good	portion	of	revenue	to	the	entire	organization,	with	millions	of	search	users	everyday.	Our	goal	
is	 to	 grow	user	 engagement	 that	 leads	 to	more	 revenue.	Meeting	 revenue	goals	 is	 a	 lot	 of	work	with	 lots	of	
pressure	especially	when	our	organization	itself	is	going	through	major	changes.	We	entered	the	Yahoo	Search	
world	without	much	knowledge	of	complexity	in	the	existing	business,	technology	and	resourcing	model.		Both	
of	us	transferred	to	Search	in	fall	of	2013	from	the	media	organization	who	owns	homepage	and	vertical	pages	
such	as	News	and	Weather.	We	only	knew	that	we	always	have	Search	Box	on	our	pages	but	did	not	now	much	
about	what	happens	once	you	start	typing	words	and	hitting	the	enter	key.	We've	learned	that	the	tech	stack	
has	multiple	 deep	 layers	 and	 components	 to	 return	 information	 and	 ads.	 Search	 logic	 behind	 the	 box	 takes	
multiple	information	such	as	user	information	and	locale	into	consideration	to	decide	how	to	collect	data,	rank	
and	select	what	to	display	and	where	to	place	it.	We	set	a	goal	of	establishing	a	sustainable	high	performance	
team	and	a	process	 that	would	work	 for	everyone.	We've	worked	 through	multiple	constraints	and	we	have	
been	able	to	come	up	with	a	model	that	works	for	us.	Your	organization	may	be	able	to	adapt	this	model	and	
gain	 some	 benefits.	 This	 is	 our	 two-year	 journey	 of	 building	 new	 teams	 across	 the	world	with	 engineering	
excellence.	

Yukari	Hasebe,	email:	yukari@yahoo-inc.com	
Mai	Le,	email:	mai.le@uber.com	
Copyright	2016	is	held	by	the	authors.		

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	2	

3. WELCOME	TO	THE	NEW	WORLD	

We	entered	Search	distribution	business	with	a	mission	to	grow	business.	Where	do	we	start?	The	first	thing	
we	did	was	ramp	up.	Learning	products	and	organization	by	going	over	portfolio,	products,	teams,	headcounts	
and	process	to	understand	the	current	status	before	starting	anything	new.	We	found	out	we	did	not	have	any	
dedicated	Engineering	resources	in	Sunnyvale	headquarters.		Teams	were	located	in	India,	Taiwan	and	Jordan.	
Luckily,	one	Product	manager	was	located	in	Sunnyvale	and	there	were	borrowed	engineering	resources	with	
domain	 expertise	 in	 Sunnyvale	 and	 Taiwan.	We	 then	 started	massive	 hiring	 efforts,	 recruited	 from	 outside,	
inside,	college	grads	and	interns	to	build	high	performing	engineering	team	in	US	headquarter;	there	was	zero	
engineer	in	US	when	we	joined.	While	we	spent	our	energy	on	hiring,	we	also	had	a	business	to	run.	We	started	
to	 look	 into	 engineering	 process	 and	 found	 multiple	 areas	 for	 improvement.	 One	 team	 is	 completely	
distributed	 across	 the	 world:	 Product	 in	 Sunnyvale,	 one	 engineer	 in	 Taiwan,	 one	 Quality	 Engineer	 and	
Production	Engineer	in	India.	The	team	had	been	releasing	once	or	twice	a	month	and	there	was	no	automation	
running	 in	 release	 pipeline.	 Team	 in	 Jordan	 had	 been	maintaining	 the	 product	 but	 not	 developing	 any	 new	
features.	Another	team	in	India	was	delivering	but	not	with	any	clear	strategy.	Little	by	 little,	 the	team	grew	
bigger	with	lots	of	training.	Our	US	team	became	a	solid	core	team	within	six	months	and	we	added	many	more	
new	 team	 members	 across	 the	 world.	 We've	 reorganized	 function	 and	 team	 structure,	 initiated	 an	 agile	
transition	and	adoption	which	works	across	distributed	teams.	Introducing	Agile/Scrum	itself	was	not	so	hard	
but	establishing	sustainable	best	practices	has	always	been	a	challenge.	There	were	many	iterations	of	trial	and	
errors	 but	 we	 have	 been	 making	 continuous	 incremental	 improvement	 and	 hoping	 to	 stay	 on	 the	 right	
direction.	We	are	sharing	some	of	the	challenges	we've	encountered	and	how	we've	addressed	them	along	the	
way.	
	

3.1 DIFFERENCES	IN	COMMUNICATION	STYLE	CAUSED	MISUNDERSTANDING	AND	DELAY	
When	starting	new	teams,	often	times	we	forget	to	confirm	what	we	think	is	“common	sense”	or	“norm”	and	
make	 assumptions	 without	 thinking	 too	 much.	 When	 assumptions	 are	 not	 true,	 we	 all	 get	 frustrated.	
Assumptions	in	communication	are	very	dangerous	especially	across	the	time	zones.	For	example,	expressing	
“No”,	 “Not	 clear,”	 or	 “Do	not	understand,”	 is	 treated	as	weakness	 in	 some	cultures,	 and	people	 tend	 to	keep	
silence.		During	the	backlog	grooming,	people	were	not	asking	questions	and	we	assumed	the	team	understood	
enough	 to	 get	 going.	However,	 it	was	not	 always	 the	 case,	we	 found	out	 things	were	blocked	 and	 left	 alone	
without	any	red	“blocker”	sign	raised.	

In	another	culture	people	tend	to	say,	“Yes”	to	everything.	People	voluntarily	took	many	stories	during	our	
planning	meetings.	 	 So	 we	 set	 the	WIP	 limit	 to	 three,	 but	 the	 next	 day	when	 you	 looked	 at	 the	 board,	 the	
number	had	increased	again.		We	found	out	people	were	taking	up	an	unrealistic	amount	of	work.	And	within	a	
sprint,	work	was	not	getting	done	properly	or	work	was	completed	differently	 from	what	was	expected.	We	
identified	 this	 type	 of	 communication	 challenge	 as	 something	 to	 be	 fixed	 right	 away.	 We	 have	 been	
experiencing	many	redundancies	in	communication.	It	was	impacting	turnaround	time	significantly.		We	were	
having	a	hard	time	understanding	each	other	even	when	we	are	all	 in	same	room;	adding	distance,	 language	
barrier	and	culture	can	multiply	the	effect.	 	

3.2 All	major	work	and	release	overhead	was	staying	in	US	team	
When	 a	 new	 big	 feature	 came	 into	 the	 plan,	 often	 times	 the	 US	 team	 was	 requested	 to	 do	 the	 work.	 It	 is	
convenient	from	a	coordination,	management	and	product	prospective.	Important	work	had	been	executed	in	
US	 while	 remote	 offices	 got	 lighter	 weight	 work.	 Another	 gap	was	 also	 in	 the	 release	 process.	 The	 release	
overhead	 was	 heavy	 and	 unreliable;	 we've	 started	 a	 release	 master	 rotation	 across	 the	 country	 hoping	 to	
balance	the	load	of	release	overhead.	A	release	master	is	in	charge	of	overseeing	release	activities	end-to-end	
starting	 from	 checked	 in	 code	 going	 through	 unit	 test,	 all	 build	 and	 test	 jobs	 to	 deployment	 to	 production.	
When	the	build	pipeline	failed,	the	release	master	is	the	first	person	to	troubleshoot	issues	and	coordinate	with	
engineers	who	broke	the	pipeline.		However,	US	engineers	were	carrying	more	weight	than	remote	offices	due	
to	gaps	 in	knowledge	and	convenience.	 	When	an	 issue	was	found	during	the	release,	 the	engineer	who	is	 in	
charge	 of	 the	 release	will	 look	 into	 it	 first	 but	 often	 times	 certain	 groups	 of	 engineers	with	 deeper	 domain	
expertise	 were	 getting	 called	 anyways.	 While	 US	 engineers	 were	 working	 overtime	 feeling	 tired,	 remote	
engineers	were	feeling	underutilized	and	under	appreciated.		
	

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	3	

3.3 Priorities	were	mixed	up	across	time	zones	
Priority	keeps	changing,	this	is	considered	as	business	as	usual,	especially	at	Yahoo.	Sometimes	it	can	change	
multiple	times	in	one	day.	Remote	teams	had	often	taken	the	wrong	stories	to	work	on	because	urgent	changes	
were	not	communicated	clearly	and	Product	assumed	things	were	clear.		This	built	frustration	at	both	US	and	
remote	offices.	The	US	team	felt	it	took	too	much	time	to	keep	updating	priorities,	and	remote	teams	felt	they	
were	not	getting	enough	and	up-to-date	updates	about	changing	priorities.	Sometimes	engineers	were	asked	to	
quit	what	they	have	been	working	on	to	switch	to	higher	priority	work.	
	

3.4 New	team	member	cannot	produce	for	a	long	time	
Any	new	team	member	could	not	produce	for	a	 long	time.	Our	tech	stack	 is	old	and	complicated	with	 lots	of	
technical	debt.	When	a	new	team	member	joined	the	team,	we	did	not	have	good	on-boarding	process	to	share,	
so	 it	was	 taking	weeks	even	 for	US	engineers	 to	even	set	up	 their	own	dev.	box	before	 learning	 the	product	
itself.		Imagine,	what	can	go	wrong	with	this	situation	with	remote	teams.		It	was	not	only	taking	a	long	time	to	
ramp	up	but	also	leaving	a	big	margin	for	error	and	misunderstanding.	So	basically,	we	kept	building	tech	debt	
during	the	process.	

	

3.5 Can't	release	as	planned	
Our	testing	and	release	process	was	100%	manual.	Release	issues	often	became	the	bottleneck	and	a	release	
was	put	on	hold	until	an	 issue	was	resolved.	We’ve	taken	a	big	 initiative	to	convert	to	CI/CD	to	mitigate	this	
issue,	that	part	was	great.	However	because	US	engineers	did	most	of	the	release	work	originally,	the	release	
was	still	blocked	when	CI/CD	pipeline	was	broken	during	non-US	business	hours.		Many	tests	were	written	by	
the	 US	 team	without	much	 knowledge	 transfer	 to	 remote	 offices	 therefore	 troubleshooting	 of	 any	 pipeline	
failure	became	a	bottleneck	for	the	release.	
	

4. WHAT	WE	DID	

What	was	listed	above	is	not	everything	we	had	problems	with;	we	have	been	encountering	new	challenges	but	
we	 are	 determined	 and	 persistent	 in	 making	 continuous	 incremental	 improvement	 to	 areas	 that	 can	 be	
improved.	We	ranked	these	 items	based	on	 feedback	 including	 ideas	 from	a	retrospective.	Higher	pain	point	
items	with	 lower	efforts	to	fix	were	taken	first.	When	introducing	a	new	thing	to	the	team,	we	need	to	make	
sure	the	team	is	not	overwhelmed	with	too	much	information.	As	leaders,	we	have	to	assess	the	team’s	capacity	
and	only	provide	what	 the	receiver	can	digest.	Otherwise,	 it	will	end	up	costing	more	as	opposed	 to	gaining	
benefits.		
	

4.1 CHANGING	COMMUNICATION	STYLE	AND	MINDSET	
We’ve	addressed	our	communication	issues	by	doing	the	following	things;	
Encourage	team	members	to	speak	up	and	communicate	by	providing	safe	environment	to	speak	up	without	
fear	 of	management,	 influencing	 equal	 opportunity	 for	 the	 teams.	 Engineers	 usually	 like	 to	 code	more	 than	
talking,	 and	many	engineers	were	not	 familiar	with	 speaking	up	 in	 front	of	 everyone	before	daily	 stand	ups	
were	introduced.	That	was	already	a	challenge.	Speaking	up	and	asking	questions	was	not	what	they	had	done	
in	the	past.	They	were	used	to	being	assigned	work	as	an	order	and	just	execute	it.		Questioning	itself	could	be	
considered	 negative	 in	 some	 cultures.	 It	 could	 demonstrate	 weakness	 in	 skill	 or	 not	 cooperating.	 We've	
repeatedly	encouraged	open	communication,	explaining	it	is	okay	to	ask	questions	whenever	we	can.		

Second	point	we've	addressed	together	with	open	communication	is	to	promote	end-to-end	accountability	
by	making	each	team	member	own	stories	 from	grooming	to	production	delivery.	This	encourages	people	to	
ask	the	right	questions	at	the	right	time.	Engineers	were	used	to	delivering	a	“task”	of	one	implemented	story	
rather	 than	delivering	 “value”".	 	By	reinforcing	end-to-end	accountability,	engineers	started	 to	see	and	 think	
differently.	 Good	 questions	 were	 started	 being	 asked	 during	 backlog	 grooming.	 This	 also	 helped	 making	
engineers	only	take	on	an	amount	of	work	they	can	deliver.	

We	 utilize	 collaboration	 tools	 to	 make	 backlog	 and	 progress	 visible	 to	 everyone	 and	 help	 improve	
communication.	A	wall	 is	 great	 for	 a	 co-located	 team	but	not	 for	distributed	 teams,	 therefore,	we	must	 take	
advantage	of	technology.	We've	used	Google	sheet,	Rally	and	Jira	to	manage	Scrum	backlogs.	Any	collaboration	

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	4	

tool	will	help	as	 long	as	clear	guidelines	are	defined	and	used	as	a	source	of	 truth,	otherwise	 it	will	 just	add	
another	management	overhead.	Let's	not	duplicate	the	same	information	in	different	places	to	avoid	confusion	
or	 introduce	 gaps.	 	We’ve	 also	 used	 video	 conferencing,	 desktop	 sharing	 and	 chat	 rooms	 to	 enhance	 closer	
interaction.	 These	 tools	 significantly	 helped	 shorten	 distance.	 Productivity	 improvements	 between	
videoconference	and	teleconference	are	big.	Observing	body	language	enhances	the	communication	experience.		
	

Adding	a	shared	daily	sync	up	meeting	log	to	keep	track	of	conversation	as	reference	point	has	been	helping	
us	a	lot.	Not	everyone	has	the	same	way	of	understanding	especially	when	English	is	not	the	first	language.	This	
document	 is	 very	 simple,	 it	 is	 not	 a	 comprehensive	 big	 log	 but	 only	 summarizing	 important	 points	 such	 as	
important	announcements,	new	defects	which	have	downstream	impact,	requests,	dependencies	and	vacation	
plans,	etc.	This	log	captures	the	context	of	daily	stand	ups	that	happen	in	each	location,	and	the	level	of	detail	
can	be	 adjusted	as	needed.	We	had	more	 lengthy	notes	 than	what	 it	 listed	 in	below	at	 the	beginning	but	 as	
teams	 matured	 over	 the	 period	 of	 time,	 they	 no	 longer	 need	 the	 same	 level	 of	 detail.	 The	 teams	 use	 this	
document	during	daily	stand	up	and	provide	important	updates	to	the	other	teams.		
	

	
	
	
	

4.2 Knowledge	transfer	and	streamlining	work	
It	is	important	to	provide	consistent	knowledge	transfer	to	transition	skills	and	domain	knowledge	across	the	
team	to	minimize	knowledge	gaps.	We’ve	invested	a	 lot	 in	knowledge	transfer.	We	send	engineers	to	remote	
offices	and	remote	office	engineers	visit	HQ	every	quarter.	One	time	checklist	type	knowledge	transfer	will	not	
work	 on	 a	 technical	 transition.	 It	 has	 to	 be	 planned	 and	 prepared	 with	 ramp	 up	 time	 in	 order	 to	 digest,	
understand	 and	 apply	 new	 knowledge.	 We’ve	 utilized	 collaboration	 tools	 and	 videoconference	 to	 increase	
productivity.	First	we	set	up	an	overview	session	to	provide	high-level	context	followed	by	deep	dive	sessions.	
We've	learned	a	face-to-face	session	is	effective	for	deep	dive	sessions.	Once	engineers	digest	information,	they	
may	ask	for	more	sessions.	During	ramp	up	time,	it	is	important	to	fully	support	ramp	up	activities.	Assigning	a	
point	of	contact	and	setting	up	office	hours	is	helpful	to	avoid	excessive	and	redundant	communication.	A	point	
of	contact	engineer	cannot	spend	all	day	just	to	answer	questions;	he/she	has	to	deliver,	too.	It	is	important	to	
keep	providing	support	as	needed	even	after	transition	and	not	 just	cut	off	communications	 just	because	the	
transition	is	over.	We	ramped	up	remote	offices	one	area	at	a	time	and	gradually	have	been	transferring	more	

Example of Daily Stand Up Log

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	5	

heavy	weight	work	to	balance	workload	across	the	team.	We	were	able	to	transfer	release	activities	to	remote	
offices	and	that	was	a	huge	victory	for	us.	After	the	transition	of	release	work	to	remote	offices,	productivity	
increased	significantly.	Now	our	releases	can	chase	the	sun!	
	

4.3 Priorities	were	mixed	up	across	time	zones	
Keeping	 on	 top	 of	 priorities	 can	 be	 challenging	 especially	 when	 there	 are	 multiple	 product	 managers	 and	
business	units	are	involved.	In	a	perfect	world,	one	company	has	unified	priority,	but	that	is	not	the	case	in	the	
real	 world.	 	 Product	 team	 assumed	 everyone	 understands	 expectations	 and	 things	 are	 clear,	 which	 is	 not	
always	 the	case.	They	wanted	everything	 to	be	done	by	 the	deadline	so	prioritization	was	not	 important	 for	
them.	 They	 assume	 everything	 will	 be	 delivered	 so	 they	 wanted	 engineers	 to	 figure	 out	 what	 to	 do	 first,	
therefore	backlog	priority	was	not	being	maintained.	One	engineering	team	with	multiple	product	owners	who	
wanted	everything	confused	our	engineers.	We’ve	since	educated	the	Product	team	to	be	on	top	of	changes,	to	
reflect	 them	 in	 tools	 accordingly,	 and	 to	 communicate	 priorities	 during	 sync	 up	 meetings.	 	 Now	 they	 are	
working	together	to	agree	on	priority	among	Product	first,	before	sharing	with	our	engineers.	This	has	helped	
minimize	throwaway	work.	
	

4.4 Establishing	our	onboarding	process	
We’ve	streamlined	the	on-boarding	process	to	be	more	intuitive.	There	was	no	onboarding	process	when	we	
started,	engineers	were	asked	to	do	lots	of	documents	mining	and	reverse	engineering.	They	found	outdated	
documents	 not	 stored	 in	 one	 place	 but	 all	 over	 the	 place,	 and	 it	 took	 time	 to	 validate	 information	 in	 those	
documents.	It	was	great	if	it	worked,	but	if	it	didn't,	they’d	have	to	figure	out	if	something	wrong	with	them	or	
the	 document	was	 outdated.	We’ve	 consolidated	 scattered	 information	 into	 one	 streamlined	 document	 and	
saved	 in	 team's	 network	 drive.	 New	 members	 are	 responsible	 to	 make	 improvements	 to	 it	 and	 add	 more	
information	and	suggestions	based	on	their	own	experience.	 	Now,	setting	up	a	dev.	box,	which	used	to	 take	
weeks,	can	be	done	in	less	than	one	day.		
	

4.5 100%	Manual	to	100%	automated	CI/CD	pipeline	
With	0%	automated	release	at	the	beginning,	it	took	a	lot	of	time	and	resource	overhead	to	release.	We	were	
lucky	if	all	test	cases	were	run	once	per	release.	Regression	test	on	different	browsers,	versions	and	countries	
are	very	time	consuming.	There	were	no	unit	tests,	and	uninspected	code	was	getting	merged.	To	achieve	true	
CI/CD	required	discipline	and	mindset	changes.	The	hardest	part	was	to	change	the	mindset	to	fail	fast	before	
things	hit	the	main	pipeline	so	a	release	does	not	get	blocked.	The	team	was	used	to	a	“just	write	and	figure	out	
at	the	last	minute”	release	model.	Releases	were	unpredictable	because	of	this	behavior.	Then	our	team	landed	
a	contract	with	a	48-hour	change	request	resolution	guaranteed	to	the	partner.	This	contract	forced	the	team	
to	go	to	CI/CD	in	order	to	be	able	to	deliver	within	48	hours.	 	The	team	spent	lots	of	effort	to	write	reusable	
automation	tests	so	anyone	can	run	them	anytime	over	and	over.	The	CI/CD	effort	was	big,	the	team	worked	
very	hard	and	within	two	months	for	this	product	area,	we	were	able	to	run	3000+	test	cases	in	less	than	40	
minutes.	Now	our	 "Definition	of	Done"	 includes	unit	 tests,	 functional	 tests,	 pre-commit	 regression	 tests	 and	
code	review.	Engineers	became	accountable	if	they	break	the	pipeline,	so	they	started	to	test	their	code	more	
and	 run	 pre-commit	 tests.	 The	 code	 reviewer	 is	 also	 accountable,	 so	 the	 entire	 team	 began	 to	 pay	 more	
attention	 to	 code	 reviews.	 This	 prevents	 bad	 code	 from	 getting	 merged	 into	 our	 pipeline.	 There	 were	 no	
checkpoints	 in	 the	past	and	the	release	branches	were	often	getting	blocked.	With	knowledge	transfer	and	a	
streamlined	work	process	as	mentioned	above,	the	pipeline	has	been	consistently	monitored	and	maintained	
by	all	team.	This	model	enabled	a	release	to	go	out	anytime.		
	

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	6	

	
	

5. LESSONS	LEARNED	FROM	EXPERIENCE	

Key	lessons	learned	from	our	experience	are:	
• Change	 communication	 style	 by	 audience	 type	 -	We	 have	 to	 analyze	 and	 adapt	 our	 communication	

style	in	order	to	be	effective.	When	teams	are	used	to	taking	orders	from	managers	and	individuals	are	
not	 used	 to	 being	 able	 to	 voice	 their	 opinions,	 then	 encouragement	must	 start	 from	 the	managers.	
Don’t	assume	but	rather	confirm	the	details.	

• Stay	in	touch	and	keep	aligned	-	It	takes	a	lot	of	time	and	efforts	to	align	and	stay	aligned.	Knowledge	
transfer	 and	 cross	 training	must	 happen	 frequently	 to	 prevent	 gaps	 from	becoming	wider.	 Sync	 up	
frequency	must	be	at	least	once	a	day	to	identify	issues,	fail	fast	and	course	correct	immediately.	

• Keep	clear	priority	-	Things	change	quickly	and	organizational	priority	overrides	team’s	priority.	This	
type	of	change	happens	often	and	even	multiple	times	a	day	in	some	cases.	Backlog	priority	needs	to	
be	clear	at	any	given	moment	to	avoid	confusion	and	delay.	

• Proof-of-Concept	 first	 then	multiply	-	When	trying	new	things,	start	a	small	POC	first	before	adding-
on/multiply.	 Rolling	 out	 new	 things	 to	 entire	 team	 at	 once	 is	 very	 risky.	 Technology	 upgrades,	
refactoring	or	changes	in	the	pipeline	can	be	tested	by	a	small	team	first	to	identify	gaps	and	support	
processed	before	rolling	out	to	the	whole	team.	It	is	always	safe	to	start	small	so	when	something	went	
wrong,	both	business	and	engineering	impact	can	be	minimized	otherwise	it	is	very	risky	especially	in	
enterprise	scale.	

• Maintain	a	clean	CI/CD	pipeline	–	The	pipeline	must	be	clean	with	good	quality	coverage.	Everyone	is	
accountable	 for	maintaining	a	clean	pipeline.	Accumulating	bigger	changes	will	 incur	more	risks	and	
support	overhead	so	keep	the	release	small	and	release	 frequently.	CI/CD	requires	behavior	change,	
otherwise	it	will	not	be	successful.	

• Effective	onboarding	process	-	Onboarding	process	should	be	tailored	to	the	needs	of	the	audience	and	
must	be	regularly	updated	to	be	reusable	in	order	to	scale	rapidly.	

Example of CI/CD Workflow

Code
Unit	test

New	Functional	
Automation

Code	
Review

Pre-commit	
Regression

Merge

 Build Deploy Regression New	Cases Performance

Prod.	Deployment

Prod.	Certification

Engineer

Added	quality

Added	quality
Fully	automated

6	days/week	with	20hr	of	engineering/day	and	multiple	releases	in	one	day	-	Yahoo	Search:	Page	-	7	

6.		ACKNOWLEDGEMENTS		

We would like to thank the following people who helped made the transformation successful.
• John Matheny, SVP Search Product, Engineering and Operations. John was our executive sponsor who

encouraged and fully supported the transformation to agile, to automation, to CI and CD. His endorsement
was key to getting organizations aligned and resourced.

• Glenn Beeswanger, VP Search Engineering and Operations. Glenn provided the opportunities, budget and
training plus any resources that we needed to rollout the transformation. He was our biggest cheerleader and
our success could not have happened without his full engagement and support.

• Mason Ng, VP Search Product Management. Our transformation would not have been successful without the
engagement, collaboration and flexibility of Mason and his organization. Mason’s consistent presence in
many of the cross-functional meetings showcased his support of the new working model which resulted in a
much easier and faster adoption.

• Our Web Search Engineering team who ensured our products are built with high quality, with full
automation and end-to-end CI/CD.

• Rebecca Wirfs-Brock - Our paper’s Shepherd for her guidance, insight, reviews and edits.
	

