Actionable Metrics at Siemens Health Services

DANIEL VACANTI, Corporate Kanban, Inc.
BENNET VALLET, Siemens Health Services

This case study details how a shift from traditional agile metrics (Story Points, Velocity) to actionable flow metrics (Work In Progress,
Cycle Time, Throughput) reduced Cycle Times, increased quality, and increased overall predictability at Siemens Health Services. Moving
to a continuous flow model augmented Siemens’ agility and explains how predictability is a systemic behavior that one has to manage by
understanding and acting in accordance with the assumptions of Little’s Law and the impacts of resource utilization.

1. INTRODUCTION

Siemens Health Services provides sophisticated software for the Healthcare industry. We had been using
traditional “agile” metrics (e.g. story points, velocity) for several years, but never realized the transparency and
predictability that those metrics promised. By moving to the simpler, more actionable metrics of flow (work in
progress, Cycle Time, and throughput) we were able to achieve a 42% reduction in Cycle Time and a very
significant improvement in operational efficiency. Furthermore, adopting Kanban has led to real
improvements in quality and collaboration, all of which have been sustained across multiple releases. This
article describes how moving to a continuous flow model augmented Siemens’ agility and explains how
predictability is a systemic behavior that one has to manage by understanding and acting in accordance with
the assumptions of Little’s Law and the impacts of resource utilization.

Before reading further, please note that we assume the reader is familiar with Kanban and its underlying
principles of pull (limiting work in progress), and flow. No attempt will be made to explain these concepts in
any detail.

2. HISTORY

Siemens Health Services (HS), the health IT business unit of Siemens Healthcare, is a global provider of
enterprise healthcare information technology solutions. Our customers are hospitals and large physician
group practices. We also provide related services such as software installation, hosting, integration, and
business process outsourcing,.

The development organization for Siemens HS is known as Product Lifecycle Management (PLM) and
consists of approximately 50 teams based primarily in Malvern, Pennsylvania, with sizable development
resources located in India and Europe. In 2003 the company undertook a highly ambitious initiative to develop
Soarian®, a brand new suite of healthcare enterprise solutions.

The healthcare domain is extremely complex, undergoing constant change, restructuring, and regulation. It
should be of no surprise that given our domain, the quality of our products is of the highest priority; in fact, one
might say that quality is mission critical. Furthermore, the solutions we build have to scale from small and
medium sized community hospitals to the largest multi-facility healthcare systems in the world. We need to
provide world-class performance and adhere to FDA, ISO, Sarbanes-Oxley, patient safety, auditability, and
reporting regulations.

Our key business challenge is to rapidly develop functionality to compete against mature systems already in
the market. Our systems provide new capabilities based on new technology that helps us to leapfrog the
competition. In this vein, we adopted agile development methodology, and more specifically Scrum/XP
practices as the key vehicles to achieve this goal

Our development teams transitioned to agile in 2005. Engaging many of the most well-known experts and
coaches in the community, we undertook an accelerated approach to absorbing and incorporating new
practices. We saw significant improvement over our previous waterfall methods almost immediately and our
enthusiasm for agile continued to grow. By September 2011 we had a mature agile development program,
having adopted most Scrum and XP practices. Our Scrum teams included all roles (product owners, scrum

Author's address: D. Vacanti, Corporate Kanban, Inc.,, Omaha, NE; email: daniel@corporatekanban.com
Author's address: B. Vallet, Siemens Medical Solutions 51 Valley Stream Parkway Malvern, PA; email: bennet.vallet@siemens.com
Copyright 2014 is held by the author(s).

masters, business analysts, developers and testers). We had a mature product backlog and ran 30-day sprints
with formal sprint planning, reviews, and retrospectives. We were releasing large batches of new features and
enhancements once a year (mostly because that’s the frequency at which we’ve always released). Practices
such as continuous integration (CI), test-driven development (TDD), story-driven development, continuous
customer interaction, pair programming, planning poker, and relative point-based estimation were for the
most part well integrated into our teams and process. Our experience showed that Scrum and agile practices
vastly improved collaboration across roles, improved customer functionality, improved code quality and speed.

Our Scrum process includes all analysis, development and testing of features. A feature is declared “done”
only after it has passed validation testing in a fully integrated environment performed by a Test Engineer
within each Scrum Team. Once all release features are complete, Siemens performs another round of
regression testing, followed by customer beta testing before declaring general availability and shipping to all
our customers.

2.1 The Problem

Despite many improvements and real benefits realized by our agile adoption, our overall success was limited.
We were continually challenged to estimate and deliver on committed release dates. Meeting regulatory
requirements and customer expectations require a high degree of certainty and predictability. Our internal
decision checkpoints and quality gates required firm commitments. Our commitment to customers, internal
stakeholder expectations and revenue forecasts required accurate release scope and delivery forecasts that
carry a very high premium for delay.

At the program and team levels, sprint and release deadlines were characterized by schedule pressure often
requiring overtime and the metrics we collected were not providing the transparency needed to clearly gauge
completion dates or provide actionable insight into the state of our teams.

In the trenches, our teams were also challenged to plan and complete stories in time-boxed sprint
increments. The last week of each sprint was always a mad rush by teams to claim as many points as possible,
resulting in hasty and over-burdened story testing. While velocity rates at sprint reviews often seemed good,
reality pointed to a large number of stories blocked or incomplete and multiple features in progress with few, if
any, features completing until the end of the release. This incongruity between velocity (number of points
completed in a sprint) and reality, was primarily caused by teams starting too many features and/or stories. It
had been common practice to start multiple features at one time to mitigate possible risks. In addition,
whenever a story or feature was blocked (for a variety of reasons such as waiting for a dependency from
another team, waiting for customer validation, inability to test because of environmental or build break issues,
etc.), teams would simply start the next story or feature so that we could claim the points which we had
committed to achieve. So, while velocity burn-ups could look in line with expectations, multiple features were
not being completed on any regular cadence, leading to bottlenecks especially at the end of the release as the
teams strove to complete and test features. During this period we operated under the assumption that if we
mastered agile practices, planned better, and worked harder we would be successful. Heroic efforts were
expected.

2.2 Why Kanban

In November of 2011 executive management chartered a small team of director level managers to coordinate
and drive process improvement across the PLM organization, with the key goal of finally realizing the
predictability, operational efficiency, and quality gains originally promised by our agile approach. After some
research, the team concluded that any changes had to be systemic. Other previous process improvements had
focused on specific functional areas such as coding or testing, and had not led to real improvements across the
whole system or value stream. By value stream in this context we mean all development activities performed
within the Scrum Teams from “specifying to done”. By reviewing the value stream with a “Lean” perspective
we realized that our problems were indeed systemic, caused by our predilection for large batch sizes such as
large feature releases. Reading Goldratt (Goldratt, 2004), and Reinertsen (Reinertsen, 2009) we also came to
understand the impacts of large, systemic queues. Coming to the understanding that the overtime, for which
programmers were sacrificing their weekends, may actually have been elongating the release completion date
was an epiphany.

This path inevitably led us to learn about Kanban. We saw in Kanban a means of enforcing Lean and
continuous improvement across the system while still maintaining our core agile development practices.
Kanban would manage Work in Progress, Cycle Time, and Throughput by providing a pull system and thus
reduce the negative impacts of large batches and high capacity utilization. Furthermore, we saw in Kanban the

Actionable Metrics at Siemens Health Services: Page - 2

potential for metrics that were both tangible (and could be well understood by all corporate stake-holders) and
provide individual teams and program management with data that is highly transparent and actionable.

We chose our revenue-cycle application as our pilot, consisting of 15 scrum teams located in Malvern, PA,
Brooklyn, N.Y. and Kolkata, India. Although each scrum team focuses on specific business domains, the
application itself requires integrating all these domains into a single unitary customer solution. At this scale of
systemic complexity, dependency management, and continuous integration, a very high degree of consistency
and cohesion across the whole program is required. With this in mind, we designed a “big-bang” approach
with a high degree of policy, work-unit, workflow, doneness, and metric standardization across all teams. We
also concluded that we needed electronic boards: large monitors displayed in each team room that would be
accessible in real time to all our local and offshore developers. An electronic board would also provide an
enterprise management view across the program and a mechanism for real-time metrics collection. Our initial
product release using Kanban began in April 2012 and was completed that December. Results from our first
experience using Kanban were far better than any of our previous releases. Our Cycle Time looked predictable
and defects were down significantly.

Our second release began in March 2013 and finished in September of that same year. We continue to use
Kanban for our product development today. As we had hoped, learnings and experience from the first release
led to even better results in the releases that followed.

3. ACTIONABLE METRICS

Now that we had decided to do Kanban at Siemens HS, we had to change the metrics we used so that we could
more readily align with our newfound emphasis on flow. The metrics of flow are very different than traditional
scrum-style metrics. As mentioned earlier, instead of focusing on things like story points and velocity, our
teams now paid attention to Work in Progress (WIP), Cycle Time, and Throughput. The reason these flow
metrics are preferable to traditional agile metrics is because they are much more actionable and transparent.
By transparent we mean that the metrics provide a high degree of visibility into the teams’ (and programs’)
progress. By actionable, we mean that the metrics themselves will suggest the specific team interventions
needed to improve the overall performance of the process.

To understand how flow metrics might suggest improvement interventions we must first explore some
definitions. For Siemens HS, we defined WIP to be any work item (e.g. user story, defect, etc.) that was
between the “Specifying Active” step and the “Done” step in our workflow (see Figure 1).

Story Type: (None)

2D-11841 © N CD-11834 @ 2 2 D-12268 © N 2D-12123 @ N 2 D-119%6 ©
Blue - Contract Modeling Blue - Performance Test IPtolP Linking - Interim & Charm 168454 - Calcs failure with ch
Deployment Analysis Inbound Charge Enc. based - Prof and Guarantor Action inRG
12/23/2013 9:10 AM 12/20/2013 9:21 AM UEIEETS L pheEloy 116
J 3 M W20 g V N
237014 ano"emy SMIEERY VenwraMatt 7.
ata
2012122 © v| |zomes @ v Ventra Matt — 7.53 AM
Charm 168038 - CTM: Blue - Master File Setup — = g::‘n“ 1232014 2012104 ©
Must handle caching in LA O 258 PM Charm 168066 - DC/
Contract Modeling 2202013521 AW OP to IP Link - change in Script for 10TS Beta
guarantor for OP 2D-12149 @ N/ environment jobs ar
Beatovic 12312014 2D-12130 © N Charm 168140 - DCC abending repeatedt
Drazen 2:54 PM Charm 168006 - 'FIX /412014
_—] Ventura Matt o5 Ay Script for Henry BETA - Deb
00B ROOT CAUSE' - Daily Accomodation Job Janmenjo =
GuadAdi and its FTLI's oy 25

Figure 1. Example Kanban Board

Cycle Time was defined to be the amount of total elapsed time needed for a work item to get from “Specifying
Active” to “Done”. Throughput was defined as the number of work items that entered the “Done” step per unit
of time (e.g. user stories per week). It is important to note here that Throughput is subtly different than
velocity. With velocity, a team measures story points per iteration. With Throughput, a team simply counts the
number of work items completed per arbitrary unit of time. That unit of time could be days, weeks, months—
or even iterations.

Actionable Metrics at Siemens Health Services: Page - 3

[t is one of those interesting quirks of fate that these three metrics of flow—WIP, Cycle Time, and
Throughput—are inextricably linked through a simple yet powerful relationship known as Little’s Law (Little,
2011) as shown in Figure 2:

Avg. Work in Progress

Avg. Cycle Time =
Avg. Throughput

Figure 2. Little’s Law

That is to say, change in any one of these metrics will almost certainly cause a change in one or both of the
others. If any one of these metrics are not where we want it to be, then this relationship tells us exactly what
lever(s) to pull in order to correct. In short, Little’s Law is what makes the metrics of flow actionable.

Think about how profound this relationship is for a second. Little’s Law tells us most (not all) we need to
know about the relationship between WIP and Cycle Time. Specifically, for the purposes of this paper, Little’s
Law formalizes the fact that—assuming certain assumptions are met—a decrease in average WIP will lead to a
decrease in average Cycle Time. To affect positive change in your overall process, you don’t need to go through
a complex agile transformation, you don’t need to do more intense estimation and planning. For the most part,
all you need to do is control the number of things that you are working on at any given time. Simple, but true.

A full discussion of Little’s Law is well beyond the scope of this article (for a fuller—though still not
complete—treatment of Little’s Law, please see the References and Appendix A at the end of this paper). The
point of mentioning it here is to raise awareness to relationship of these crucial metrics. Most agile teams don’t
look at WIP, Cycle Time, and Throughput; yet it is the understanding of these metrics and how they affect one
another that is the key to taking an actionable approach to agile management. The rest of this article will
explain such an approach.

3.1 Types of Charts

The two main types of charts we used to visualize these metrics were the Cumulative Flow Diagram (CFD) and
the Cycle Time Scatterplot. As was the case with Little’s Law, a deep discussion around what these charts are
and how to interpret them is well beyond the scope of this article. We encourage you to do some investigation
into these charts on your own as they are among the best tools out there for managing flow. Unfortunately,
however, there is a lot of misinformation and disinformation floating around about how these charts work;
therefore, we have included some links to resources that you may find useful in the references section at the
end of this article.

3.2 Process Performance before Kanban

We have stressed throughout this paper that predictability is of paramount importance to Siemens HS. So how
was the organization doing before Kanban?

Figure 3 is a scatterplot of Cycle Times for finished stories in the Financials organization for the whole
release before Kanban was introduced.

Actionable Metrics at Siemens Health Services: Page - 4

Homne mulative Flow Scatterplot Histogram
180

I 85% of stories
wl finished in 71
| days or less

Cycle Time (Days)

0 h § [L X X .
Oct 1,2011 Nov 1, 201 Dec 1, 2011 Jan 1, 2012 Feb 1,2012
Copynight 2014 Actionable Agile, Inc. (http://actionableagde.com)

Figure 3. Cycle Times in the release before Kanban

Mar 1, 2012

What this scatterplot tells us is that in this release, 50% of all stories finished in 21 days or less. But remember
we told you earlier that Siemens HS was running 30-day sprints? That means that any story that started at the
beginning of a sprint had little better than 50% chance of finishing within the sprint. Furthermore, 85% of
stories were finishing in 71 days or less—that’s 2.5 sprints! What’s worse is that Figure 3 shows us that over
the course of the release the general trend of story Cycle Times was getting longer and longer and longer (see
Figure 4).

Home Cumulative Flow Scatterplot Histogram Projection Source Data «

Cycle Time (Days)

Oct 1, 2011 Nov 1, 2011 Dec 1, 2011 Jan 1, 2012 Feb 1,2012
Copyright 2014 Actionable Agile, Inc. (http:/factionableagile.com)

Figure 4. General Upward Trend of Cycle Times before the Introduction of Kanban

Mar 1, 2012

Figure 4 is not a picture of a very predictable process.

Actionable Metrics at Siemens Health Services: Page - 5

So what was going on here? A simplified interpretation of Little’s Law tells us that if Cycle Times are too
long, then we essentially have two options: decrease WIP or increase Throughput. Most managers
inexplicably usually opt for the latter. They make teams work longer hours (stay late) each day. They make
teams work mandatory weekends. They try to steal resources from other projects. Some companies may even
go so far as to hire temporary or permanent staff. The problem with trying to impact Throughput in these
ways is that most organizations actually end up increasing WIP faster than they increase Throughput. If we
refer back to Little’s Law, we know that if WIP increases faster than Throughput, then Cycle Times will only
increase. Increasing WIP faster than increasing Throughput only exacerbates the problem of long Cycle Times.

3.3 How We Learned to Reduce Cycle Time

Our choice (eventually) was the much more sensible and economical one: reduce Cycle Times by limiting WIP
through the use of Kanban. What most people fail to realize is that limiting WIP can be as simple as making
sure that work is not started at a faster rate than work is completed (please see Figure 5 as an example of how
mismatched arrival and departure rates increases WIP in the process). Matching arrival rates to departure
rates is the necessary first step to stabilizing a system. Only by operating a stable system could we hope to
achieve our goal of predictability.

Unfortunately for us, however, the first release that we implemented Kanban, we chose not to limit WIP
right away (the argument could be made that we weren’t actually doing “Kanban” at that point). Why?
Because early on in our Kanban adoption the teams and management resisted the imposition of WIP limits.
This was not unexpected, as mandating limits on work went against the grain of the then current beliefs. We
therefore decided to delay implementing WIP limits until the third month of the release. This allowed the
teams and management to gain a better familiarity of the method and become more amenable.

The delay in implementing WIP limits cost us and in retrospect we should have pushed harder to impose
WIP limits from the outset. As you might expect, because of the lack of WIP limits, the very same problems that
we saw in the previous release (pre-Kanban) started to appear: Cycle Times were too long and the general
trend was that they were getting longer.

Taking a look at the CFD (Figure 5) in the first release with Kanban clearly shows how our teams were
starting to work on items at a faster rate than we were finishing them.

Home Cumulative Flow Scatterplot Histogram Projection Source Data «

Arrival/Departure Rate jtems
Jun 18 - Aug 23 day
System 4.45 258

N
o
o

Work ltems
=
(4.
o

Departures 7 =ic

Jun 25, 2012 Jul 2, 2012 Jul 9, 2012 Jul 16, 2012 Jul 23, 2012 Jul 30, 2012 Aug 6, 2012 Aug 13,2012 Aug 20, 2012
Copyright 2014 Actionable Agile, Inc. (http:/factionableagile.com)

Figure 5. CFD Early on in the first release with Kanban

Jun RB 2012

Actionable Metrics at Siemens Health Services: Page - 6

This disregard for when new work should be started resulted in an inevitable increase in WIP which, in turn,
manifested itself in longer Cycle Times (as shown in Figure 6).

Home umulative Flow Scatterplot Histogram Projection ource Data

120

100

Cycle Time (Days)

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Nov 1, 2012 Dec 1, 2012
Copyright 2014 Actionable Agile, Inc. (http://actionableagde.com)

Figure 6. Scatterplot early on in the first release with Kanban

Upon seeing these patterns emerge, we instituted a policy of limiting WIP across all teams. Limiting WIP had
the almost immediate effect of stabilizing the system such that Cycle Times no longer continued to grow (as
shown in Figure 7).

Scatterplot [letogan Exolection

120

g
£
E 95%
2
o
3
43 85%
70%)
g 50%)
4 20%|

. -
Aug 1, 2012 Sep 1, 2012 Nov 1, 2012 Dec 1,2012
Copynght 2014 Actionable Agile, Inc. (http://actionableagde.com)

Figure 7. Stabilized Cycle Times after introducing WIP Limits

Actionable Metrics at Siemens Health Services: Page - 7

Over the course of our first release with Kanban, the 85t percentile of story Cycle Time had dropped from 71
days to 43 days. And, as you can see from comparing Figure 4 to Figure 7 (the release before Kanban, and the
first release using Kanban, respectively) the teams were suffering from much less variability. Less variability
resulted in more predictability. In other words, once we limited WIP in early September 2012, Cycle Times did
not increase indefinitely as they did the release before. They reached a stable state at about 41 days almost
immediately, and stayed at that stable state for the rest of the release.

This stabilization effect of limiting WIP is also powerfully demonstrated in the CFD (Figure 8):

Scatterplot Histogram Projection Source Data «

Home Cumulative Flow

Departures

Work ltems

/ Specifying (Done)

v Jul 1, 2012 Aug 1, 2012 Sep 1,2012 Oct 1, 2012 Nov 1, 2012
Copyright 2014 Actionable Agile, Inc. (http:/factionableagile.com)

Figure 8. CFD in the first release with Kanban after WIP limits were introduced

The second release after the introduction of Kanban saw much the same result (with regard to predictability).
85 percent of stories were finishing within 41 days and variability was still better controlled. Looking at the

two scatterplots side by side bears this out (Figure 9).

Actionable Metrics at Siemens Health Services: Page - 8

Cycl Time (Days)

£
i
&

Figure 9. Scatterplots of the first release using Kanban (above) and the second release of Kanban (below)

Hopefully it is obvious to the reader that by taking action on the metrics that had been provided; we had
achieved our goal of predictability. As shown in Figure 9, our first release using Kanban yielded Cycle Times of
43 days or less, and our second release using Kanban yielded Cycle Times of 40 days or less. This result is the
very definition of predictability.

By attaining predictable and stable Cycle Times we would now be able to use these metrics as input to
future projections. These shorter Cycle Times and decreased variability also led to a tremendous increase in
quality. Figure 10 shows how Kanban both reduced the number of defects created during release development
well as minimizing the gap between defects created and defects resolved during the release.

900

Kanban Quality Impact

800

700

600

500

e Post-Kanban open

400
300

esmm Post-Kanban closed

emmmPre-Kanban open

200

Number of Defects

Pre-Kanban closed

T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Weeks

T T

Figure 10. Quality compared between releases

By managing queues, limiting work-in progress and batch sizes and building a cadence through a pull system
(limited WIP) versus push system (non-limited WIP) we were able to expose more defects and execute more
timely resolutions. On the other hand “pushing” a large batch of requirements and/or starting too many

Actionable Metrics at Siemens Health Services: Page - 9

requirements delays discovery of defects and other issues; as defects are hidden in incomplete requirements
and code.

By understanding Little’s Law, and by looking at how the flow appears in charts like CFDs and scatterplots,
Siemens HS could see what interventions were necessary to get control of their system. Namely, the
organization was suffering from too much WIP, which was, in turn, affecting Cycle Time and quality. In taking
the action to limit WIP, Siemens saw an immediate decrease in Cycle Time and an immediate increase in
quality.

These metrics also highlighted problems within the Siemens HS product development process, and the next
section will discuss what next steps the organization is going to implement in order to continue to improve its
system.

4. HOW METRICS CHANGED EVERYTHING

Apart from the improvements in predictability and quality, we also saw significant improvements in
operational efficiency. We had “real-time” insight into systemic blocks, variability and bottlenecks and could
take appropriate actions quickly. In one case by analyzing Throughput (story run rate) and Cycle Time for each
column (specifying, testing and developing), we were able to clearly see where we were experiencing capacity
problems. We were also able to gauge our “flow efficiency” by calculating the percentage of time stories were
being worked on or “touched” versus “waiting” or “blocked”. Wait time is the time a story sits in an inactive or
done queue because moving to the next active state is prevented by WIP limits. Blocked time is the time that
work on a story is impeded, including impediments such as build-breaks, defects, waiting for customer
validation etc. The calculation is made by capturing time spent in the “specifying done and developing done”
column plus any additional blocked time, which we call “wait time”. (Blocked or impediment data is provided
directly by the tool we are using). Subtracting “wait time” from total Cycle Time gives us “touched time”.
Calculating flow efficiency is simply calculating the percentage of total touch time over total Cycle Time. Flow
efficiency percentage can act as a powerful Key Performance Indicator (KPI) or benchmark in terms of
measuring overall system efficiency.

This level of transparency, broadly across the program and more deeply within each team enabled us to
make very timely adjustments. Cumulative flow diagrams provided a full picture at the individual team and
program levels where our capacity weaknesses lay and revealed where we needed to make adjustments to
improve Throughput and efficiency. For example, at the enterprise level using the cumulative flow diagram the
management team was able to see higher Throughput in “developing” versus “testing” across all teams and thus
make a decision to invest in increasing test automation exponentially to re-balance capacity. This was actually
easy to spot as the “developing done” state on the CFD consistently had stories queued up waiting for the
“testing” column WIP limits to allow them to move into “testing”.

At the team level, the metrics would be used to manage WIP by adjusting WIP limits when needed to
ensure flow and prevent the build-up of bottlenecks and used extensively in retrospectives to look at
variability. By using the scatterplot, teams could clearly see stories whose cycle time exceeded normal ranges,
perform root cause analysis and take steps and actions to prevent recurrence. The CFD also allowed us to track
our average Throughput or departure-rate (the number of stories we were completing per day/week etc.) and
calculate an end date based on the number of stories remaining in the backlog - (similar to the way one uses
points and velocity, but more tangible). Furthermore, by controlling WIP and managing flow we saw continued
clean builds in our continuous integration process, leading to stable testing environments, and the clearing of
previously persistent testing bottlenecks.

The results from the first release using Kanban were better than expected. The release completed on
schedule and below budget by over 10%. The second release was even better: along with sustained
improvements in Cycle Time, we also became much faster. By reducing Cycle Time we were increasing
Throughput, enabling us to complete 33% more stories than we had in the previous release, with even better
quality in terms of number of defects and first pass yield - meaning the percentage of formal integration and
regression tests passing the first time they are executed. In the release prior to Kanban our first pass yield
percentage was at 75%, whereas in the first Kanban release the pass percentage rose to 86% and reached 95%
in our second release using Kanban.

The metrics also gave us a new direction in terms of release forecasting. By using historical Cycle Times we
could perform Monte-Carlo simulation modelling (Magennis, 2012) to provide likely completion date forecasts.
If these forecasts proved reliable, we would no longer need to estimate. In our second Kanban release we
adopted this practice along with our current points and velocity estimation planning methods and compared

Actionable Metrics at Siemens Health Services: Page - 10

the results. Apart from the obvious difference in the use of metrics versus estimated points, the simulation
provides a distribution of likely completion timeframes instead of an average velocity linear based forecast -
such as a burn up chart. Likewise Cycle Time metrics are not based on an average (such as average number of
points) but on distributions of actual Cycle Times. The histogram shown below in Figure 11 is an example of
actual historical Cycle Time distributions that Siemens uses as input to the modelling tool. In this example 30%
of stories accounting for 410 actual stories had Cycle Times of 9 days or less, the next 20% accounting for 225
stories had cycle-times of 10 to 16 days, and so forth.

30th Percentile (410)
400

w
(=
o

70th Percentile (264)

50th Percentile (225)

Frequency

N
(=]
o

85th Percentile (174)

95th Percentile (120)

100
100th Percentile (61)

0to 9 days 10 to 16 days 17 to 28 days 29 to 40 days 41 to 60 days 61 to 227 days
Figure 11. Cycle Time Distributions

What we learned was that velocity forecasts attempt to apply a deterministic methodology to an inherently
uncertain problem. That type of approach never works. By using the range or distributions of historical Cycle
Times from the best to worst cases and simulating the project hundreds of times, the modelling simulation
provides a range of probabilistic completion dates at different percentiles. For example, see figure 11 below
showing likely completion date forecasts used in release planning. Our practice is to commit to the date which
is closest to the 85t percent likelihood as is highlighted in the chart. As the chart shows we are also able to use
the model to calculate likely costs at each percentile.

Actionable Metrics at Siemens Health Services: Page - 11

Al Forecast Date and Likelihood - O -

Results | Permutations | Tracking (beta)

Likelihood Date Workdays Cost Cost of Delay Days of Delay L~
100.00 % |01-Nov-2013]200 $1,200,000.00| $0.00 0 g
99.20 % |29-Oct-2013 | 197 $1,182,000.00| $0.00 0 0
95.20 % | 25-Oct-2013 | 193 $1,158,000.00| $0.00 0 0

j 9040 % |21-Oct-2013 |189 $1,134,000.00| $0.00 0 0
86.80 % 17-Oct-2013 | 185 $1,110,000.00 | $0.00 0 (0
79.20 % 13-Oct-2013 | 181 $1,086,000.00 | $0.00 0 o

| 75.60 % 10-Oct-2013 | 178 $1,068,000.00| $0.00 0 0
7200 % |06-Oct-2013 |174 $1,044,000.00| $0.00 0 0
69.60 % |02-Oct-2013 |170 $1,020,000.00| $0.00 0 0

: 62.80 % |28-Sep-2013 | 166 $996,000.00 |$0.00 0 g
52.00 % |24-Sep-2013 | 162 $972,000.00 |$0.00 0 g

| 48.00% |21-Sep-2013 |159 $954,000.00 |$0.00 0 g
41.60 % 17-Sep-2013 | 155 $930,000.00 |$0.00 0 qg

| 32.80 % 13-Sep-2013 | 151 $906,000.00 |$0.00 0 dwv
As HTML... Close

Figure 12. Result of Monte-Carlo simulation showing probability forecast at different percentages

Over the course of the release the model proved extremely predictive; moreover, it also provided to Siemens
the ability to perform ongoing risk analysis and “what-if” scenarios with highly instructive and reliable results.
For example, in one case, to meet an unexpected large scope increase on one of the teams, the Program
Management Team was planning to add two new Programmers. The modelling tool pointed to adding a Tester
to the team rather than adding programming. The tool proved very accurate in terms of recommending the
right staffing capacity to successfully address this scope increase.

At the end of the day, it was an easy decision to discard story point velocity-based estimation and move to
release completion date forecasts. The collection of historical Cycle Time metrics that were stable and
predictable enabled Siemens to perform Monte-Carlo simulations, which provided far more accurate and
realistic release delivery forecasts. Thus a huge gap in our agile adoption closed. In analyzing the metrics,
Siemens also discovered that there was no correlation between story point estimates and actual Cycle Time.

Siemens also gained the ability to more accurately track costs; as we discovered that we could in fact
correlate Cycle Time to actual budgetary allocations. Siemens could now definitively calculate the unit costs of
a story, feature and/or a release. By using the modelling tool we could now forecast likely costs along with
dates. Moreover, we could put an accurate dollar value on reductions or increases in Cycle Times.

The metrics also improved communication with key non-PLM stakeholders. It had always been difficult
translating relative story points to corporate stakeholders who were always looking for time based answers
and who found our responses based on relative story points confusing. Metrics such as Cycle Time and
Throughput are very tangible and especially familiar in a company such as Siemens with a large manufacturing
sector.

Implementing Kanban also had a positive impact on employee morale. Within the first month, scrum-
masters reported more meaningful stand-ups. This sentiment was especially expressed and emphasized by
our offshore colleagues, who now felt a much higher sense of inclusion during the stand-up. Having the same
board and visualization in front of everyone made a huge difference on those long distant conference calls
between colleagues in diametrically opposed time zones. While there was some skepticism as expected,

Actionable Metrics at Siemens Health Services: Page - 12

overall comments from the teams were positive; people liked it. This was confirmed in an anonymous survey
we did four months into the first release that we used Kanban: the results and comments from employees were
overwhelmingly positive. Furthermore, as we now understood the impact of WIP and systemic variability,
there was less blame on performance and skills of the team. The root of our problem lay not in our people or
skills, but in the amount of Work in Progress (WIP).

5. CONCLUSION AND KEY LEARNINGS

Kanban augmented and strengthened our key Agile practices such as cross-functional scrum teams, story
driven development, continuous integration testing, TDD, and most others. It has also opened the way to even
greater agility through our current plan to transition to continuous delivery.

Traditional agile metrics had failed Siemens HS in that they did not provide the level of transparency
required to manage software product development at this scale. Looking at a burn-down chart showing
average velocity does not scale to this level of complexity and risk. This had been a huge gap in our agile
adoption, which was now solved.

Understanding flow—and more importantly the metrics of flow—allowed Siemens to take specific action in
order improve overall predictability and process performance. On this note, the biggest learning was
understanding that predictability was a systemic behavior that one has to manage by understanding and acting
in accordance with the assumptions of Little’s law and the impacts of resource utilization.

Achieving a stable and predictable system can be extremely powerful. Once you reach a highly predictable
state by aligning capacity and demand, you are able to see the levers to address systemic bottlenecks and other
unintended variability. Continuous improvement in a system that is unstable always runs the risk of
improvement initiatives that result in sub-optimizations.

The extent of the improvement we achieved in terms of overall defect rates was better than expected.
Along with the gains we achieved through managing WIP, we had placed significant focus on reinforcing and
improving our CI and quality management practices. Each column had its own doneness criteria and by
incorporating “doneness procedures” into our explicit policies we were able to ensure that all quality steps
were followed before moving a story to the next column - for example moving a story from “Specifying” to
“Developing”. Most of these practices had predated Kanban; however the Kanban method provided more
visibility and rigor.

The metrics also magnified the need for further improvement steps: The current Kanban implementation
incorporates activities owned within the Scrum Teams; but does not extend to the “backend process” —
regression testing, beta testing, hosting, and customer implementation. Like many large companies Siemens
continues to maintain a large batch release regression and beta testing process. Thus begging the question,
what if we extended Kanban across the whole value stream from inception to implementation at the customer?
Through the metrics, visualization, managing WIP and continuous delivery we could deliver value to our
customers faster and with high quality. We could take advantage of Kanban to manage flow, drive predictable
customer outcomes, identify bottlenecks and drive lean continuous improvement through the testing,
operations and implementation areas as well. In late 2013 we began our current and very ambitious journey
to extend the Kanban method across the whole value stream.

Finally it is important to say that Kanban has had a very positive impact on employee morale. It has been
embraced across all our teams in all locations without exception and has improved collaboration. Furthermore
the use of metrics instead of estimation for forecasting has eliminated the emotion and recrimination
associated with estimation. Anyone wishing to go back to sprinting would be few and far between, including
even those who had previously been the most skeptical.

6. ACKNOWLEDGEMENTS

We would like to thank the Agile Alliance and especially Rebecca Wirfs-Brock for the invitation to share our
experiences. We would also like to thank Siemens HS for allowing us to publish this case study. Last, but
certainly not least, we would like to thank Nanette Brown for her tireless efforts in guiding us through this
process. This article would not have come together without her keen insights, questions, and edits. Thanks,
Nanette, we couldn’t have done it without you!

Actionable Metrics at Siemens Health Services: Page - 13

APPENDIX A: A VERY SHORT INTRODUCTION TO LITTLE’S LAW FOR AGILE TEAMS

When most lean-agile adherents talk about Little’s Law, we usually state it in terms of the Throughput (or the
departure rate) of a system as shown here:

Cycle Time = Work-In-Progress / Throughput (1)

where Throughput is the average departure rate of the system (or the average output of a production process
per unit time), Work in Progress is the amount of inventory between the start and end points of a process, and
Cycle Time is the time difference between when a piece of work enters the system and when it exits the system.
Cycle Time can also be thought of as “flow time” in the Kanban context (or it can be thought of as the amount a
time a unit of work spends as Work in Progress).

[wonder how many people know, however, that this is not the original “version” of the law. When first
written down (sometime in the 1950s—and subsequently “proved” in 1961) the law was actually defined in
terms of the arrival rate of a system (not the departure rate). That definition generally looked something like:

L=aW (2)

Where, L =average number of items in the queuing system,
W = average waiting time in the system for an item, and
A =average number of items arriving per unit time

For this law to hold when stated in terms of arrival rate, at least two things need to be true: first, we must have
some notion of system stability; and second, the calculation must be done using consistent units. Simple
enough.

Orisit?

When Little’s Law is usurped for use in Lean applications, equation (1) is often stated by so-called experts
to justify a reduction of WIP as a means to reduce Cycle Time. Then some wild flailing of the hands and some
clearing of the throat is made along with some barely-audible mention of system stability (if it is mentioned at
all and not swept under the rug entirely). The “experts” then quickly move on to the next topic so as to avoid
any embarrassing questions as to what “system stability” really means.

[t is a fairly straightforward exercise (and one I leave up to the reader) to demonstrate that equations (1)
and (2) are logically equivalent. What is not so straightforward is to understand in what situations equation
(1) is applicable given that (1) is stated in terms of departure rate and (2) is stated in terms of arrival rate (do
we even need to state different assumptions for the two forms of the equation?).

It turns out that when talking about Little’s Law in the form of equation (1), five conditions must exist in
order for the law to be valid (for the purposes of this discussion, I'm going to assume that the total WIP in a
candidate process never goes to zero—as should normally be the case in most good Kanban systems):

1. The average output or departure rate (Throughput) should equal the average input or arrival rate (L).
. All work that is started will eventually be completed and exit the system.
3. The amount of WIP should be roughly the same at the beginning and at the end of the time interval
chosen for the calculation.
4. The average age of the WIP is neither growing nor declining.
5. The calculation must be performed using consistent units.

What's most interesting to me about what’s stated here is what's not stated here. There is no mention of
characteristic statistical distributions of arrival or departure rates, there is no mention of all work items being
of equal (or roughly equal) size, and there is no mention of a specific queuing discipline—to name just a few.
When these five conditions are met, Little’s Law is exact. Period. That’s a pretty bold statement, but it’s
true nonetheless. One thing to note about exactness is that Little’s Law is only exact after the fact. Little’s Law
cannot be used to make deterministic predictions about the future. For example, let’s say that for the past six
months you have had an average of 12 items in progress and an average Throughput of 4 items per week,
which gave you an average Cycle Time of 3 weeks per item. Now let’s say you want to reduce your Cycle Time
to 2 weeks. Simple, right? Just lower WIP to an average of 8 items and Little’s Law predicts your Cycle Time

Actionable Metrics at Siemens Health Services: Page - 14

will magically lower to 2 weeks. Wrong. Little’s Law will not guarantee this outcome. That is to say, that
Little’s Law does not guarantee that lowering WIP will have a deterministic effect on Cycle Time.

So why learn about Little’s Law? The proper application of Little’s Law is not a deterministic one. It is
understanding the assumptions behind the law that make it work (as stated above). Using those assumptions
as a template for your own process policies is what will make your process predictable. Implementing those
policies is what makes flow metrics (WIP, Cycle Time, and Throughput) truly actionable.

REFERENCES

Goldratt, Eliyahu M. “The Goal, A Process of Ongoing Improvement” North River Press, 31 revised edition, 2004

Little, John D C “Little’s Law as Viewed on its 50t Anniversary” Operations Research, Vol. 59, No. 3, May-June 2011, pp. 536-549
Magennis, Troy “Forecasting and Simulating Software Development Projects - Effective Modeling of Kanban & Scrum projects using
Monte-Carlo Simulation” self-published 2011

Reinertsen, Donald G. “The Principles of Product Development FLOW” Celeritas Publishing, 2009

Vacanti, Daniel, Corporate Kanban blog, http://www.corporatekanban.com

The Cumulative Flow Diagrams and Scatterplots have been created courtesy of Actionable Agile, Inc. (http://www.actionableagile.com)

Actionable Metrics at Siemens Health Services: Page - 15

