
Distributing Expertise in Agile Software
Development Projects

Mawarny Md. Rejab
School of Engineering
and Computer Science

Victoria University of Wellington,
Wellington, New Zealand

Mawarny.Md.Rejab@ecs.vuw.ac.nz

James Noble
School of Engineering
and Computer Science

Victoria University of Wellington,
Wellington, New Zealand

kjx@ecs.vuw.ac.nz

George Allan
School of Engineering
and Computer Science

Victoria University of Wellington,
Wellington, New Zealand

george.allan@ecs.vuw.ac.nz

Abstract—The distribution of expertise in Agile teams is vital
to enable team knowledge to be shared, preserved, and accessed
when it is needed. Most studies emphasize knowledge sharing
but a few empirical studies focus on skills. Integrating knowledge
and skills is vital to leverage expertise in Agile teams. Moreover,
it is not easy to leverage expertise by distributing expertise in
Agile teams. Through a Grounded Theory study involving 18
Agile practitioners based in New Zealand and Australia, we
revealed five approaches to distributing expertise in Agile teams:
embracing a master-apprentice model, coaching and mentoring,
engaging hands-on learning, establishing discussion platforms and
disseminating explicit knowledge. Distributing expertise will pro-
vide insight into how Agile team members disseminate available
expertise and pull new expertise into Agile teams.

I. INTRODUCTION

The Agile team is a cross-functional team that includes all
the expertise necessary for every phase involved in developing
software [1]. All team members must understand each team
member’s role and participate beyond their area of expertise
[2]. Agile team members do not just rely on their expertise
in choosing tasks, but also tend to perform other tasks when
needed. This is particularly important when Agile team mem-
bers have to be involved in multiple projects at the same time.
Relying on the same person for a variety of projects tends
to cause bottlenecks. In order to avoid bottlenecks, there is
a high tendency to absorb others’ responsibilities. Thus, it
is important to ensure the team knowledge can be shared,
preserved, and accessed through distributing expertise.

Knowledge management is defined as “the process of
capturing, distributing, and effectively using knowledge” [3].
This definition states that distribution of expertise is a part
of knowledge management. Duhon [4] asserted that expertise
constitutes knowledge management assets. Expertise refers
to skills and knowledge that are retained by individuals to
produce an outstanding performance [5] plus the ability of
a person to generate knowledge in solving specific problems
[6][7].

A number of researchers have studied knowledge sharing
in the Agile software development context by emphasizing
knowledge, rather than skills [8][9]. Integrating knowledge
and skills is vital to leveraging expertise in Agile teams. Cho
and his colleagues [10] posited that it is not easy to retain
the distribution of expertise in Agile teams. Thus, this paper

presents results from ongoing study addressing how Agile team
members leverage expertise through distribution of expertise.

The rest of this paper is structured as follows: the second
section describes Grounded Theory, our research methodology;
the third section presents the research finding; the fourth
section discusses our research findings; and the last section
puts forward our conclusions.

II. RESEARCH METHODOLOGY

This study requires in-depth exploration of human behavior
and social interaction from empirical data. As an inductive
research method, Grounded Theory is used to infer new the-
ories from observed data [11]. This study employs Grounded
Theory to conceptualize and theorize about the underpinnings
of distributing expertise from Agile software development
perspectives.

A. Data Collection

Through Grounded Theory, we employ interviews as data
collection methods. Interviews provide reliable data sources
because the researcher has direct contact with participants
during data collection [12]. This direct contact enables us
to gain a deeper understanding of participants’ concerns. As
depicted in Table 1, semi-structured interviews have been
carried out with 18 Agile practitioners from different software
organizations based in New Zealand and Australia. This study
requires a broad range of Agile roles to enable the triangulation
of findings. Different roles provide different insights and
perspectives toward distributing expertise in Agile teams. The
data collection will continue until no new data emerges, which
means theoretical saturation has been reached [11].

B. Data Analysis

A continuous interplay between data collection and analy-
sis is the pivotal procedure in Grounded Theory [13]. In order
to allow the emergence of theory, data analysis is done as
soon as the first interview has been conducted [11]. Key point
coding is used to analyze the interview transcripts in detail. We
collate the key points by examining phrases, words, sentences
from the interview transcripts [14]. Then, we construct codes
by rephrasing key points with meaningful labels. In order to
look for similarities and differences, constant comparison is
used to compare every emerging code with the previous codes.

2014 Agile Conference

978-0-7695-5222-4/14 $31.00 © 2014 IEEE
DOI 10.1109/AGILE.2014.16

33

TABLE I. SUMMARY OF RESEARCH PARTICIPANTS AND AGILE
SOFTWARE PROJECTS

Person Location Agile Role Agile Methods
P1 New Zealand Developer XP and Scrum
P2 New Zealand Agile Coach XP, Scrum & Kanban
P3 Australia Agile Consultant Not specified
P4 New Zealand Agile Coach Scrum and XP
P5 New Zealand Software Tester Not specified
P6 Australia Team leader Not specified
P7 New Zealand Agile Consultant Scrum and XP
P8 Australia Agile Coach Scrum, XP, Kanban, Lean
P9 New Zealand Business Analyst Not specified
P10 New Zealand Software Tester Scrum
P11 New Zealand Project Manager Scrum
P12 New Zealand Agile Coach Scrum and Kanban
P13 New Zealand Agile Coach Scrum and Kanban
P14 New Zealand Product Owner Scrum
P15 New Zealand Agile Coach Scrum and Kanban
P16 New Zealand Agile Coach Scrum and Kanban
P17 New Zealand Developer Scrum
P18 New Zealand Software Tester Scrum

Fig. 1. The emergence of the category “Distributing Expertise” from
underlying concepts

Similar codes with common themes are grouped together and
emerge as a concept. Many concepts emerge, and constant
comparison is repeated until concepts form a category. A
category is a group of similar concepts that are used to
generate the core category. To date, several categories have
been emerged including “distributing expertise”.

III. RESEARCH FINDINGS

The category “distributing expertise” emerged from the
data analysis to describe how Agile team members disseminate
available expertise and pull new expertise into the team.
This paper revealed five approaches to distributing expertise
in Agile teams:embracing a master-apprentice model, coach-
ing and mentoring, engaging hands-on learning, establishing
discussion platforms and disseminating explicit knowledge.
Figure 1 depicts the emergence of the category “distributing
expertise” from underlying concepts.

A. Embracing a Master-Apprentice Model

Participants reported that master and apprentice relation-
ships focus on pulling new expertise into Agile teams. A
master is an internal or external expert who has responsibility
to bring the new expertise into Agile teams, whereas the
apprentice is someone seeking new expertise. Learning by
doing together is the focal element in the master-apprentice
model:
“The master is where you pull skills you don’t have [sic].
Someone internal, or you, might bring contractors or a con-
sultant for a small period of time. They start work together.

The apprentice learns as well as he can and learns to become
a master.” - P3, Agile Consultant.

The master-apprentice relationship is a temporary scenario,
whereby the master will leave the Agile team once the appren-
tice has grasped the new expertise. In order to disseminate the
expertise widely into Agile teams, the same implementation
is repeated by rotating the apprenticeship with other team
members. At this point, the apprentice becomes a master and
trains others based on what he or she has learnt:
“When the expert goes, the team [still] has knowledge of how
to do the piece of work.” - P3, Agile Consultant.

Developing a learning organization is a benefit gained
from the master-apprentice model. A learning organization
creates a culture that encourages and facilitates continuous
employee learning. Through a learning organization, Agile
team members tend to transfer from individual learning to
shared learning.

B. Coaching and Mentoring

Participants stated that coaching and mentoring are other
methods to obtain the required knowledge and skills:
“If the team doesn’t know anything about the skill, the best
thing is to invite a mentor [or coach] from the real community
and teach us [sic].” - P2, Agile Coach.

Agile teams adopt mentoring and coaching through Agile
coach roles. An Agile coach plays an important role in
facilitating team members to gain new knowledge and skills.
An Agile coach can also act as a mentor in strengthening team
members’ skills, particularly for those who have failed to meet
expectations. With the proper guidance and adequate expertise,
team members can gain benefits through the coaching and
mentoring approach:
“Bring the coach for several times, and pair and teach [them]
how to do [sic].”- P6, Team Leader.

The findings of this study indicate that there are a few
differences between the coaching and mentoring approach
and the master-apprentice model. While both approaches aim
to disseminate expertise, the master-apprentice model puts
a high priority on producing an expert or a master in the
specific skill. In terms of implementation, the coaching and
mentoring focuses on facilitating and training, whereas the
master-apprentice emphasizes learning by collaborating. Both
approaches complement one another and are essential to the
successful distribution of expertise in Agile teams.

C. Engaging Hands-on Learning

Transforming the learning experience through hands-on
exercises provides opportunity to develop expertise, as well as
distribute expertise. Drawing from the research findings, there
are three ways to engage hands-on learning in Agile teams:
coding dojo, pair-programming, and internship programs.

A coding dojo involves two team members working to-
gether to solve the programming problem with feedback and
guidance from the audience. Role rotation is essential to enable
other audience members to have hands-on programming within
the limited time. A coding dojo provides a space for Agile
team members to learn, practise, and share their programming
skills:

34

“The developers run workshops, [by] running a coding Dojo.
Then, they will be paired on the computer to tackle some
problems. We rotated the team around and we can see what
other people are doing.” - P15, Agile Coach.

Pair-programming is embedded in coding dojo practices.
Most participants affirmed that pair-programming is a pow-
erful practice in disseminating their expertise to other team
members:
“Learning from one another through pair programming. Keep
pairing and everybody will learn and pull expertise.” - P2,
Agile Coach.

Hands-on learning can also be gained through the intern-
ship program. This program requires Agile team members to
attach themselves with other teams for a short period of time.
The goal of the internship program is to bring the new expertise
into Agile teams:
“Internships are like short apprenticeships where people can
learn from people who are really good at something by working
alongside them. They temporarily join another squad for 2 -
4 weeks and learn as much as they can.” - P12, Agile Coach.

In certain circumstances, these hands-on learning methods
are incorporated in a master and apprentice model, as well
as coaching and mentoring. For instance, pair-programming
is applied in the master-apprentice model. However, most
identified hands-on learning methods are applicable to foster
shared learning even without master or coach involvement.

D. Establishing Discussion Platforms

Having meaningful discussion through the right platform
tends to enable the distribution of expertise in Agile teams.
Three discussion platforms have been identified from this
research finding: interest groups, chatting tools, and robust
debate.

Our finding reveals that interest groups provide a solid base
of interconnection among peers who have similar interests in a
particular area of expertise. Agile team members meet for face-
to-face discussions on a regular basis to share their expertise
and learn from each other:
“They set up some special interest groups for sharing knowl-
edge within the company such as testing community, and
developer community.” - P15, Agile Coach.

A chatting tool is another discussion platform that facili-
tates the distribution of expertise. Agile team members have
the ability to communicate by sharing their expertise at any
time:
“We got Internet Relay Chat (IRC). It is an in-house chat [tool]
for chatting within a specific group such as testers group,
developers group, with different channels. This place is where
we can share the information.” - P17, Software Tester.

One of the participants noted that it is normal to have robust
debates when they were collaborating:
“We worked on the story. We had quite a lot of debate. If
you look [from] outside, it might look like we are arguing and
screaming at each other. But look inside, it is just a reflection
of passion. All the time the idea is moved.” - P4, Agile Coach.

The aim of robust debate is to reach a resolution by
forming arguments in the right way. From the positive insight,

a robust debate encourages Agile team members to stimulate
their minds in order to generate ideas. Open and genuine de-
bates allow the distribution of expertise particularly in solving
problems and making decisions.

E. Disseminating Explicit Knowledge

Most concepts emphasize distributing tacit knowledge.
Another concept “disseminating explicit knowledge” , how-
ever emerged from our findings. This concept describes how
explicit knowledge can be disseminated, shared, and preserved
in Agile teams through video, sketching on whiteboards, and
document management tools.

A video is the preferred method for delivering knowledge
and skills among Agile team members. The video image
movement is a good mechanism to present new software skills.
Replaying the same video contents for different audiences
tends to save time and cost:
“You just point the video and let them watch the video. If
you have 100 people, then 100 people can watch the video.
Everybody can have the same understanding [sic].”- P2, Agile
Coach.

Sketching on whiteboards facilitates Agile team members
to externalize their mental models of expertise. The tacit
knowledge can be visualized in explicit form through the
sketch. The sketch has the ability to support the face-to-face
communication in strengthening the distribution of expertise:
“That’s very much like having some design sketch on a white-
board. We need the sketch to understand and communicate
how to do the code [sic].” - P2, Agile Coach.

Two document management tools have been identified from
our findings: Google Docs and Wikis. Google Docs allows
Agile team members to create, edit, and share documents
online. One participant claimed that he shared documents not
just for sharing the software project information, but also for
disseminating individual knowledge and skills. Everyone has
the opportunity to access and update the shared documents in
order to distribute expertise:
“For us as testers, we have spreadsheets on Google Docs for
[saving] command lines. We share the command lines that we
know on the spreadsheets, which are accessible for everyone.”
- P17, Software tester.

A strategy used by one of the participants for orientation
purposes was sharing tribal knowledge through wikis:

“Now, many teams use wikis. Wikis actually report on some
tribal knowledge...if the new developer joins, then they use this
induction [sic].” - P2, Agile Coach.

Tribal knowledge is undocumented knowledge that should
be known by Agile team members. Wikis allow the transition
of tribal knowledge, from undocumented knowledge to written
knowledge. Through Wikis, Agile team members can share
information that should be known by a newcomer before
they engage in software development projects. Wikis play an
important role in preserving tribal knowledge and supporting
organizational memory.

IV. DISCUSSION

A coaching and mentoring approach is a common method
to share tacit knowledge in Agile teams [15][16]. Several

35

research studies have demonstrated the success of coaching
and mentoring in sharing knowledge in Agile teams [17][18].
In contrast, there is a paucity of studies that focus on the
master-apprentice model [19]. Consequently, more findings
are needed to clearly define the proper implementation of
a master-apprentice model specifically in the Agile software
development context.

A majority of participants asserted that pair-programming
was their preference in sharing knowledge among peers.
Thus, pair-programming are incorporated with other practices
such as coding dojo, coaching, and master-apprentice models
[20][21][22]. In terms of internships, Lindvall et al.’s study
[17] mentioned the internships program in Agile teams. How-
ever, there is limited discussion on internships in the Agile
software development context. Thus, further investigation is
needed to clearly define how internships are implemented in
Agile software development.

This study also indicated that distributing expertise can be
established through discussion platforms such as robust debate.
Our finding contradicts a study completed by Chau et al.[8],
which posited that debate tends to delay the knowledge transfer
in Agile teams. Proper implementation to facilitate debates,
however, is essential to ensure that the knowledge sharing
between individuals takes place successfully [23]. Our finding
is consistent with Dessai et. al’s study [24], which indicated
that chatting tools assist the understanding of others’ expertise
and also facilitate the sharing of expertise among Agile team
members [24]. Future data collection and analysis will reveal
more discussion platforms that facilitate the distribution of
expertise in Agile teams.

Wikis gain positive attention among Agile practitioners,
serving as knowledge platforms for the Agile software devel-
opment community to organize, share, integrate, and preserve
explicit knowledge effectively [8][25]. Wikis can help in
distributing expertise by providing each team member with
a flexible privilege to access, update, and share their explicit
knowledge. According to Settina and Heijstek [26], further
investigation is needed to explore the adoption of wikis and
Google Docs in Agile teams.

V. CONCLUSION

This paper describes several techniques for Agile teams to
disseminate the expertise and pull new expertise into teams.
The distribution of expertise in Agile teams is vital to enable
team knowledge to be shared, preserved, and accessed when it
is needed. Distributing expertise ultimately leads to successful
cross functional teams. Besides the identified approaches,
we believe that there are more approaches used by Agile
practitioners to distribute expertise in Agile teams. Further
data collection and analysis will divulge other approaches and
when to choose the right approach in distributing expertise.
In order to optimize the effectiveness of expertise distribution,
we intend to investigate factors that affect the distribution of
expertise in Agile teams.

ACKNOWLEDGMENT

We would like to express the deepest appreciation to
Student Learning Support Service (SLSS) staffs and Dr. Siva
Dorairaj for outstanding editing and proofreading

REFERENCES

[1] J. Sutherland, “Scrum handbook,” 2010. [Online]. Available:
http://jeffsutherland. com/scrumhandbook. pdf/

[2] R. Hoda, “Self-organizing agile teams: A grounded theory,” Phd Thesis,
Victoria University of Wellington, 2011.

[3] T. H. Davenport, “Saving it’s soul: Human-centered information man-
agement.” Harvard business review, vol. 72, no. 2, pp. 119–31, 1994.

[4] B. Duhon, “It’s all in our heads,” Inform, vol. 12, no. 8, pp. 8–13, 1998.
[5] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-

proach to identifying expertise,” in Proceedings of the 24th international
conference on software engineering, 2002, pp. 503–512.

[6] K. Kuchinke, “The status of the theory and the literature,” Performance
Improvement Quarterly, vol. 10, pp. 72–86, 1997.

[7] R. Herling, “Operational definitions of expertise and competence,”
Advances in developing human resources, vol. 2, no. 1, pp. 8–21, 2000.

[8] T. Chau and F. Maurer, “Knowledge sharing in agile software teams,”
in Logic versus approximation. Springer, 2004, pp. 173–183.

[9] C. R. D. Souza, “Fostering inter-team knowledge sharing effectiveness
in agile software development,” 2012.

[10] J. Cho, R. Huff, and D. Olsen, “Management guidelines for scrum agile
software development process,” Issues in Information Systems, vol. 12,
no. 1, pp. 213–223, 2011.

[11] B. G. Glaser and A. L. Strauss, The discovery of grounded theory:
Strategies for qualitative research. Aldine de Gruyter, 1967.

[12] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. Sage Publications Limited, 2006.

[13] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[14] G. Allan, “A critique of using grounded theory as a research method,”
Electronic Journal of Business Research Methods, vol. 2, no. 1, pp.
1–10, 2003.

[15] S. Ryan and R. V. O’Connor, “Development of a team measure for tacit
knowledge in software development teams,” vol. 82, no. 2. Elsevier,
2009, pp. 229–240.

[16] A. Elshamy and A. Elssamadisy, “Divide after you conquer: an agile
software development practice for large projects,” pp. 164–168, 2006.

[17] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F. Shull,
R. Tesoriero, L. Williams, and M. Zelkowitz, “Empirical findings in
agile methods,” pp. 197–207, 2002.

[18] S. C. Misra, V. Kumar, and U. Kumar, “Identifying some important
success factors in adopting agile software development practices,”
Journal of Systems and Software, vol. 82, no. 11, pp. 1869–1890, 2009.

[19] K. H. Judy, “Agile principles and ethical conduct,” in System Sciences,
2009. HICSS’09. 42nd Hawaii International Conference on. IEEE,
2009, pp. 1–8.

[20] D. T. Sato, H. Corbucci, and M. V. Bravo, “Coding dojo: An en-
vironment for learning and sharing agile practices,” in Agile, 2008.
AGILE’08. Conference. IEEE, 2008, pp. 459–464.

[21] V. A. Santos, A. Goldman, and C. D. Santos, “Uncovering steady ad-
vances for an extreme programming course.” Centro Latinoamericano
de Estudios en Informtica, 2012, vol. 15, no. 1, pp. 2–2.

[22] J. Evnin and M. Pries, “Are you sure? really? a contextual approach
to agile user research,” in Agile, 2008. AGILE’08. Conference. IEEE,
2008, pp. 537–542.

[23] S. Fernie, S. D. Green, S. J. Weller, and R. Newcombe, “Knowledge
sharing: context, confusion and controversy,” International Journal of
Project Management, vol. 21, no. 3, pp. 177–187, 2003.

[24] K. Dessai and M. Kamat, “Application of social media for tracking
knowledge in agile software projects,” Available at SSRN 2018845,
2012.

[25] J. Garcı́a, A. Amescua, M.-I. Sánchez, and L. Bermón, “Design
guidelines for software processes knowledge repository development,”
Information and Software Technology, vol. 53, no. 8, pp. 834–850, 2011.

[26] C. J. Stettina and W. Heijstek, “Necessary and neglected?: an empirical
study of internal documentation in agile software development teams,”
in Proceedings of the 29th ACM international conference on Design of
communication. ACM, 2011, pp. 159–166.

36

