
Development of Complex Software
with Agile Method

Alan Braz
IBM Research - Brazil

Avenida Tutóia 1157, 04007-005

São Paulo, SP, Brazil

alanbraz@br.ibm.com

Cecı́lia M. F. Rubira
Institute of Computing

State University of Campinas

P.O. Box 6176, 13083-852,

Campinas, SP, Brazil

cmrubira@ic.unicamp.br

Marco Vieira
Department of Informatics

Engineering

University of Coimbra

3030, Coimbra, Portugal

mvieira@dei.uc.pt

Abstract—Agile Software Development (ASD) has been on
mainstream through methodologies such as XP and Scrum
enabling them to be applied in the development of complex
and reliable software systems. This paper is the end result of
the Master’s dissertation of the main author, and proposes a
solution to guide the development of complex systems based on
components by adding exceptional behavior modeling practices
to Scrum, resulting in the Scrum+CE method (Scrum with
Exceptional Behavior).

In order to evaluate the proposed method, a synthetic con-
trolled experiment was conducted with three groups.We com-
pared the efficiency of the new process in relation to plain Scrum
and the results were the production of a better quality software
but with less features implemented during the same amount of
time.

Keywords—Agile Software Development, Scrum, Component-
Based Development, Reliability, Exception handling, Software En-
gineering

I. INTRODUCTION

The Software Engineering has been suffering changes in
its methods and practices due to the growing need to develop
systems in shorter periods with lower costs and satisfying qual-
ity. By contrast, the complexity of these systems is increasing
as well as the need for them to be reliable. Dependability
is no longer a mere nonfunctional requirement just inherent
to critical systems, such as a flight controller or a financial
system, but of all software systems that require a certain
robustness to not expose sensitive information and maintain
a service dependable as much as possible. To address these
issues, ideas like Component-Based Development (CBD) [1]
and Architecture-Centric Development [2] have been applied
with relative success on developing more reliable software.

However, there is a trend of using “lighter” methods of
development and project management software. This set of
principles and practices called lightweight were named Agile
Methods or Agile Software Development (ASD) methods by
several professionals who met in 2001 to formalize what had
already been doing for some years, as Extreme Programming
(XP) [3] and Scrum [4], resulting in the Agile Manifesto [5].

Nevertheless, this simplicity is often confused with infor-
mality and lack of rigor, especially regarding the activities
of modeling, documentation of functional and nonfunctional
requirements and architectural design.

This article proposes a solution named Scrum+CE to guide
the development of robust component-based systems that adds
some practices of MDCE+ to the Scrum framework. These
practices affect the Pregame and Game phases in the aspect of
discovering and modeling exceptional conditions in the format
of Exceptional Stories and more detailed Acceptance Tests.
Scrum+CE also inserts a required artifact of the High Level
Architecture and the new role of Architecture Owner.

The methodology used to validate the proposed solution
was Synthetic Environment Experiments [6], where a smaller
version of Scrum and Scrum+CE were executed. This reduc-
tion had to be made due to the availability of human resources
and time to execute the experiment.

The validation hypotheses were that using Scrum+CE
would result in the delivery of (i) less Story Points, since the
requirements are more detailed; and (ii) better quality of the
final software in terms of less defects, once it will drive to a
more robust exception handing code.

II. RELATED WORK

Radinger and Goeschka [7] proposed an approach to in-
tegrate the ASD and the CBD in small and large projects
by combining the technical and organizational issues of both
approaches.

Nord and Tomayko [8] explored the relationships and syn-
ergies between design and analysis focused on the architecture-
centric method and XP Agile methodology, noting that the
latter emphasizes the rapid and flexible while the first priority
to the design and infrastructure.

Behrouz [9] have discussed and shown that despite the dif-
ferent goals, a combination of Software Reliability Engineering
(SRE) and the Agile practice of Test Driven Development
(TDD) have improved the reliability of the developed software.
In this case, we did not focus on TDD approach to increase
dependability, but we achieved it by adding elements of
exception handling at early phases of development process.

III. BACKGROUND

A. Agile Method

Agile Software Development (ASD) is a set of methodolo-
gies guided by four values and twelve principles defined by
the Agile Manifesto [5]. These values are:

2015 Agile Conference

978-1-4673-7153-7/15 $31.00 © 2015 IEEE

DOI 10.1109/Agile.2015.18

97

1) Individuals and interactions over processes and tools
2) Working software over comprehensive documentation
3) Customer collaboration over contract negotiation
4) Responding to change over following a plan

The twelve principles expand the values in more details by
giving more emphasis to the left items of values than the right
ones.

B. Scrum Methodology

Scrum is an agile software management framework, that
promotes an iterative and incremental development. It was
introduced in 1995 by Schwaber [4] proposing a process
with three phases: Pregame (Conception or Initiation), Game
(Development) and Postgame (Closure or Rollout).

Despite the Scrum has evolved a lot since the Schwaber’s
1995 [4] paper in terms of removing the software engineer-
ing practices and focusing on team organization and project
management, for the sake of this work, we choose to use the
first academic reference due to the need to handle exceptional
behavior at the architecture level. This decision was made
because the High Level Architecture, in our proposed solution,
must begin before the first development Sprint, there is, at the
Pregame.

C. Methodology for Exceptional Behavior Definition
(MDCE+)

Ferreira [10] presented a methodology for building fault-
tolerant systems using techniques of exception handling.This
methodology is named MDCE, acronym in Portuguese for
“Methodology for the Definition of Exceptional Behavior”.
It extends the Unified Modeling Language (UML) with new
stereotypes.

Brito [11] extended MDCE defining MDCE+ which aims
to systematize the modeling and implementation of exceptional
behavior in the development of component-based systems.
The emphasis on architecture has enabled a better analysis
of the flow of exceptions that occur between architectural
components, resulting in efficient handlers, and anticipating
the correction of possible specification faults.

IV. THE PROPOSED SOLUTION

The proposed solution is an adapted agile development
process based on Scrum process that adds some MDCE+
practices and techniques to increase the robustness of the de-
veloped complex product. The name of this proposed process
is Scrum+CE (the CE comes from Exceptional Behavior in
Portuguese) and it adds practices at the Pregame and Game
phases of Scrum in order to raise, detail and document the
exceptional behavior in the format of Exceptional Stories
and Acceptance Tests more judicious inside the regular User
Stories [12], and also refines and documents the architecture
highlighting the exceptional components.

Figure 1 shows the phases of Scrum with the activities
from MDCE+ in gray. Scrum+CE doesn’t add new phases to
Scrum, therefore it still has Pregame, Game and Postgame.
Table I shows the relation between the phases of Scrum and
MDCE+. Note that due to the iterative aspect of the Game
phase, composed by sprints, some MDCE+ phases will be
repeated.

������	
��	����		���	
��������	�	�	
��

�����������	
���������	
��	������
���

�������	
������
�	��

�
��
������	����������	
�����������
�����	
��
��������������
��
�����

�������	
��
��
�������
���������
���������

������	
�����
��
����� ������	��
�����������	
����
�
�����������������	������

�
�����
���	����������	
�

�������
�������	��
�������������	��������
�	������������	��

��	
����
�� �������	
�������
��!	��������
����
����

����

���	���

"
��

��

�

$
���

%
��

	�
��

�&���

#�������	
������
�

�	
��������������

"����	��	
��
�
������	
����������	��

Fig. 1. MDCE+ practices affecting Scrum phases. Extended from [4]

TABLE I. RELATION BETWEEN MDCE+ AND SCRUM PHASES.

Scrum Phases Scrum Events MDCE+ Phases

Pregame
Planning

1. Requirements specification and
analysis
2. Management aspects definition

System architecture /
high level design

3. Architecture design

Game

Sprint Planning

1. Requirements specification and
analysis
3. Architecture design
4. System analysis
5. System design

Sprint
6. Components implementation
7. Components integration

Sprint Review
1. Requirements specification and
analysis
8. User-acceptance release

Postgame
Integration tests 7. Components integration
Wrapping

8. Production Release deploy
Closure

A. Pregame

1) Planning: Besides the regular activities of the Planning

phase of Scrum there were added the following activities (i)
identify the exceptions and define the exceptional behavior in
the form of Exceptional Stories and (ii) describe the excep-
tional assertive in the form of Acceptance Tests either at the
normal behavior User Stories or at the introduced Exceptional
Stories.

During the review of the Product Backlog, all stories should

be revisited in order to add extra Acceptance Tests, derived
from the Exceptional Stories, resulting in a formalization of
the exceptional assertive and in consequence generating a more
robust test set.

2) Definition of “Done”: Exceptional behavior should also

be explicit regardless the definition agreed by the entire team.
The Architecture Owner has the responsibility of adding the
following to it: “. . . and all exceptions were properly han-
dled. . . ”.

3) System architecture / high level design: Just like Plan-

ning, this phase still formatted by the Scrum activities plus
a new role, the Architecture Owner, and a new mandatory
artifact, the High Level Architecture document. Both additions
have brought the concepts of Architecture-Centric Develop-
ment to Scrum+CE. The architecture has to follow the concepts
of CBD and have at least a component-level architecture

98

diagram, the most important architectural decisions, used tech-
nologies and frameworks, and an initial data model. It is
recommended to document it in a collaborative tool, like a
Wiki. This would allow the document to be highly available,
flexible and support the Agile Manifesto principle that states:
“The best architectures, requirements, and designs emerge
from self-organizing teams”.

B. Game

Scrum+CE is also an iterative process in the format of
time-boxed sprints with length between two and four weeks
that repeat continuously until the implementation of every
requirement of the Product Backlog or the Product Owner
declares that the current Increment is valuable as a final
product. With that, the Scrum events, structure and activities
remain the same.

The MDCE+ practices, highlighted at Figure 1, will affect
the Product Backlog with the addition of Exceptional Stories,
and the Sprint Backlog, with the related tasks dedicated to
the implementation of exceptional behavior. Once inside the
backlogs, either exceptional stories or tasks will the treated by
the Development Team as ordinary ones.

C. Postgame

The Postgame still with the wrapping and preproduction
activities to the end-user release and did not have any change
in relation to Scrum.

V. VALIDATION

In order to validate the benefits and applicability of
Scrum+CE, we designed a controlled experiment in which
a information-based software system, with dependability re-
quirements relating to data consistency, were implemented.
The experiment consists of an object (P1), that is, the software
system in Java for the web platform along with its predefined
architecture following the Model-View Controller (MVC) [13]
pattern, and three subjects, that is, three professional groups
(G1, G2 and G3) with experience this technology that will be
part of the Development Team, as described by Table II;

TABLE II. EXPERIMENT MODELING.

Object G1 G2 G3

P1 O1: Scrum O2: Scrum+CE O3: Scrum+CE

Using this format, G1 was the control group, and conse-
quently G2 and G3 were the experimental groups. This kind of
experiment followed a controlled method called Synthetic En-
vironment Experiments [6] where a reduced version, in terms
of duration time, of Scrum and Scrum+CE were executed.
So each Sprint will last 1 week (4 hours per day during 5
coonsecutive days), with a 2-hour virtual work-day including
a 3-minute Daily Scrum meeting.

All the professionals selected to implement the project of
the experiment have at least 3 years of working experience
developing software in Java and basic training in Agile. The
fact that all participants were proficient in Java and Scrum,
helped to strengthen the internal validity of the experiment,
that is, the results would be influenced by the development
process instead of their previous knowledge.

The Pregame and Postgame phases were done by the
author of this paper, while the Game phase was done by
the participants. The three implemented source-codes were
available to the execution of functional tests and the collection
of metrics used further in the result analysis.

A. Pregame execution

In this phase it was defined the product Vision and Product
Backlog with all stories prioritized and estimated in Story
Points. The role of Architecture Owner of Scrum+CE was
conducted by the author for the groups G2 and G3, as well
as the roles of Product Owner and Scrum Master for all
three groups. This participation was necessary to control the
variables, requirements, artifacts and adherence to processes
by groups, thus, maintaining the validity of the experiment.
Every artifact was presented to each group independently.

1) Scrum groups division: The participants were invited to
participate in a “Scrum in Practice” training. they had to fill
out a registration form composed by knowledge and experience
questions about Agile, Scrum and Java development and 12
participants were selected. It was created a technical score
for each participant. The scores were distributed among three
groups. The scores from G1 to G3 respectively were: 253
(36%), 225 (32%) and 233 (33%). G1 had the highest relative
score so it was intentionally choose to be the control group.

2) System architecture / high level design: The architecture
of the system was presented for the three groups during the
first Sprint Planning Meeting and followed a simple four layer
model as illustrated at Figure 2. In this case, the layers User
Session and System Services were unified and further layers
of server side followed the MVC [13] design pattern. This
architecture was used in Scrum+CE groups G2 and G3. Even
not required in Scrum, the same diagram was given to the
control group G1, but without the two exceptional components.

���
����	
�������

������

������

�������

�����������

����������

�����������

��������

�������������
����������	
���
��������������

��������� ��� �������

	��!

"##

Fig. 2. Component-based software architecture diagram exposing the
exceptional components used by the experimental groups G2 and G3.

From the CBD standpoint, each layer was treated as a com-
ponent, and the goal of Game phase was the implementation
of such components.

B. Game execution

The experiment itself was implement in a format of a 40-
hour Scrum in Practice training. The time was divided in 2
sprints of 20 hours, and each sprint was composed by 7 virtual
days of 2 hours each. With that, it was possible to simulate
rigorously the Scrum and Scrum+CE processes. The activities
of the three groups were conducted in parallel with a difference

99

of about ten minutes between a group and another due to
movement of the author between the rooms.

1) Sprint 1: At the beginning of the experiment, all partici-
pants were gathered in the same room where they were notified
about their respective groups and directed to a exclusive
meeting room. After that the groups started the Sprint Planning
Meeting and then followed the schedule described at Table III.
Since no initial code was provided, all groups selected only
two User Stories to be implemented in this first Sprint.

At the end of the fifth day, playing the role of Product
Owner, the author made an individual Sprint Review Meeting
with each group when they demonstrated the features imple-
mented during this sprint. Only G1 delivered both stories. The
other two groups, delivered only one story each.

So at the end of this sprints the Product Backlog of
the groups was different. At this point, G1 had two stories
completed, and G2 and G3 only one.

TABLE III. SCHEDULE OF SPRINT 1.

Day Activity Duration

1
Reception and organization 2 hours
Planning Meeting 2 hours

2

Daily Scrum 3 minutes
Implementation day 1 2 hours
Daily Scrum 3 minutes
Implementation day 2 2 hours

3

Daily Scrum 3 minutes
Implementation day 3 2 hours
Daily Scrum 3 minutes
Implementation day 4 2 hours

4

Daily Scrum 3 minutes
Implementation day 5 2 hours
Daily Scrum 3 minutes
Implementation day 6 2 hours

5

Daily Scrum 3 minutes
Implementation day 7 2 hours
Review Meeting 2 hours

2) Sprint 2: It had a slightly different schedule but followed
the same structure of Table III besides the first and last days.
Day 1 was composed by a Planning Meeting of 2 hours, a
Daily Scrumof 3 minutes and the Implementation day 1 with
2 hours. Day 5 had a Review Meeting with 3 hours and a
Retrospective that took 1 hour.

In this sprint, the groups started the Sprint Planning
Meeting reviewing their own updated Product Backlog and
selecting the stories that they would commit with the Product
Owner to deliver at the end of Sprint 2. At the last day, we
gather all participants at the same room and made a collective
Sprint Review Meeting. Every group presented the results of
their implementation and the author, again as Product Owner,
validated them all. The list of the stories delivered by each
groups is at Table IV.

The Sprint Retrospective was a collective session where we
discussed how was the feeling of using an agile method with
time-boxed events to develop complex software. Then it was
reveled to the participants that the process used by the groups
were different.

C. Postgame execution

The first activity of this phase was to build a set of
functional tests to run against each source code available. It

was created several test cases, based on the Acceptance Tests,
for each delivered story.

The metrics collected in this phase were divide in three
categories: (i) number of requirements; (ii) quality of require-
ments; and (iii) quality of code.

1) Requirements delivered metrics: A User Story was only
considered completed if it respected the Definition of “Done”.
Table IV shows the entire Product Backlog with the stories
delivered by each group and its correspondent Story Points.

TABLE IV. USER STORIES DELIVERED BY GROUP.

Story Points G1 G2 G3
1 20 • • •
2 5 • • •
3 8 • • •
4 3 • • •
5 3 • • •
6 2 • •
7 1 • • •
8 3

9 5 • • •
10 2 •
11 2

12 5

13 2

Total stories 9 7 8

Total points 49 45 47

2) Requirements quality metrics: Once the architecture was
designed to interact with the system using HTTP requests, it
was built a test suite to run the same set of tests against the
different codes automatically. Table V consolidates the results
of the functional tests showing the number of tests executed
against each group code, the amount of failed tests (defects)
and the fail rate.

TABLE V. NUMBER OF TESTS EXECUTED AND DEFECTS FOUND BY

GROUP.

Metric G1 G2 G3
Tests executed 189 149 161

Failed tests 66 44 21

Fail rate 35% 30% 13%

3) Code quality metrics: The delivered codes were submit-
ted to a static analysis in order to evaluate the code quality.
It was used an automated and open-source toll called Sonar
[14]. Table VI shows some relevant metrics provided by this
tool.

TABLE VI. CODE QUALITY METRICS.

Metric G1 G2 G3
Lines of Code (LOC) 2232 1984 1950

Number of Classes 27 47 38

Number of Exceptions 1 21 2

Native catch blocks 53 18 33

Created catch blocks 9 12 6

Cyclomatic Complexity (CC) [15] 446 305 288

CC by class 15.9 4.5 7.2

CC by method 5.0 2.4 2.5

VI. RESULTS ANALYSIS

Due to the size of the experiment it was not possible
to make a statistical analysis of the collected data. Thus, a
quantitative analysis was performed comparing the control
group (G1) and each of the experimental groups (G2, G3),
resulting in two sets of results: G1-G2 and G1-G3.

100

A. Requirements delivered

Figure 3 shows the comparison between the User Stories
and Story Points delivered.

������������ ������������
��	
��

���
��

��	
��

���
��

�	
��

����

���

����

���

���

���

Fig. 3. Stories relation between G1 and G2, and between G1 and G3.

Analyzing these numbers, Scrum+CE resulted in fewer
Story Points (6.1% on average) delivered once the two exper-
imental groups gave fewer stories (16.7% on average) which
was expected and should be compensated with a better code
quality.

Another metric that supports this issue is the amount of
Lines of Code (LOC) of the delivered systems, presented in
line 1 of Table VI. It highlights that the code delivered by G1,
which implemented a greater number of stories, was higher
than the other groups. The relative size of G2 to G1 was
11% smaller, and to G3, 13% smaller. With that, the size of
the system in LOC is directly proportional to the amount of
functionality delivered.

B. Requirements quality

The amount of tests executed, listed at Table V, were
directly proportional to the delivered requirements at Table IV.
Since only delivered User Stories were tested, G2 and G3 were
exposed to fewer amount of tests.

The fail rate is the metric that best represents the results of
the experiment and helps to validate the hypothesis in which
the use of Scrum+CE over Scrum would increase the “code
quality generated by decreasing the number of defects”. The
fail rate of each group was 35%, 30% and 13% respectively
for G1, G2 and G3, as shown in Table V. To support this
analyses, we can rely on Table VI to check that G2 and G3
took different approaches to design the exceptions (Number
of Exceptions and Created catch blocks). In other hand, they
delivered equivalent size in terms of Lines of Code (LOC) and
Cyclomatic Complexity (CC).

Considering that a failed test generates a defect, these
results indicate a validation of the hypothesis, since the ex-
perimental groups had lower fail rates than the control group.
Therefore, the usage of Scrum+CE promoted the creation of a
better quality code when compared to G1.

VII. CONSOLIDATED RESULTS

As a result of the experiment, we demonstrated that the
expectation over the method Scrum+CE was proved once there
was delivered 6.1% less Story Points than using Scrum, but
with a decrease of 13.5% in the number of defects found.
Therefore, using the Scrum+CE delivered less Story Points
but with a better quality code (fewer defects) in relation to the
development that used the Scrum.

VIII. CONCLUSION

Despite the size of the experiment, in terms of number
of participants and duration, we couldn’t apply any statistical
analysis. So we were unable to generalize this results to every
kind and size of complex software project with some relia-
bility requirement. During this work we realize how hard and
expensive it is to make software engineering experimentation
due to the need of people availability for a long period of time.
Even with this challenges, we considered a great experience
during the author’s master degree dissertation work.

The same experiment could be replicated with more groups
or even bigger groups, implementing the same project require-
ments, for the same time-frame, in order to collect more data,
and eventually make it possible some sophisticated statistical
analysis at the results. This is a suggestion of future work that
would reinforce this study.

This work also inspired the software engineering teachers
of our institute to remodel the software engineering practice
courses of the Computer Science and Computer Engineering
undergraduate courses. We supported this changes at the
course agenda and execution for both 2014 semesters obtaining
amazing results and feedbacks from the students and teachers.
These experiences will be published in the near future.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc.

[2] I. Sommerville, Software Engineering, 9th ed. Harlow, England:
Addison-Wesley, 2010.

[3] K. Beck, Extreme Programming Explained: Embrace Change, US ed.
Addison-Wesley Professional, Oct.

[4] K. Schwaber, “SCRUM Development Process,” in Proceedings of
the 10th Annual ACM Conference on Object Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 117–134.

[5] K. Beck et al. (2001) Manifesto for Agile Software Development.
Accessed: 17 Apr 2015. [Online]. Available: http://agilemanifesto.org

[6] M. V. Zelkowitz and D. Wallace, “Experimental Validation In Software
Engineering,” Information and Software Technology, vol. 39, pp. 735–
743, 1997.

[7] W. Radinger and K. M. Goeschka, “Agile software development for
component based software engineering,” Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, Oct. 2003.

[8] R. L. Nord and J. E. Tomayko, “Software Architecture-Centric Methods
and Agile Development,” IEEE Software, vol. 23, no. 2, pp. 47–53, Mar.
2006.

[9] B. Far, “Software Reliability Engineering for Agile Software Develop-
ment,” 20th IEEE Canadian Conference on Electrical and Computer
Engineering CCECE, pp. 694–697, 2007.

[10] G. R. M. Ferreira, “Tratamento de exceções no desenvolvimento de
sistemas confiáveis baseados em componentes,” Master’s thesis, IC,
Unicamp, Dec. 2001.

[11] P. H. S. Brito, “Um Método para Modelagem de Exceções em Desen-
volvimento Baseado em Componentes,” Master’s thesis, IC, Unicamp,
Oct. 2005.

[12] M. Cohn, User Stories Applied: For Agile Software Development.
Addison-Wesley, 2004.

[13] S. Stelting and O. Maassen, Applied Java Patterns. Prentice Hall
Professional, 2002.

[14] SonarQubeTM. Accessed: 16 Oct 2012. [Online]. Available: http:
//www.sonarsource.org

[15] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

101

