
THE AGILE ALLIANCE DEBT ANALYSIS MODEL
By Jean-Pierre Fayolle, Thierry Coq and Jean-Louis Letouzey
Contributors: Declan Whelan, Tom Grant and Dan Sturtevant

As explained in our introduction document about technical debt, it is important to
identify and analyze technical debt in order to take relevant decisions about its pay-back.

One of the first steps, which is the identification of technical debt item, could be tricky or at
least time consuming. So, we have prepared a “ready to use” list to help agile teams to do
so.

This list is the A2DAM (Agile Alliance Debt Analysis Model). It contains good practices
which, when violated, generate technical debt.

One will find below:

● The main goal and usage of this list.
● How it has been built.
● Its content.
● Assumptions for the estimation model.
● Impacted characteristics.
● How to use it.
● Recommendation for extending it.

Main goals of A2DAM
This list responds to basic uses cases such as:

● Use Case 1: A new agile team is ready to start a project and is working on its
Definition Of Done (DOD). They want to include criteria about amount and type of
technical debt.

● Use Case 2: A computer programming teacher is looking for a list of simple and basic
coding practices to introduce to his/her students.

● Use Case 3: An organization outsources a development project and would like to add
source code related requirements. This to make sure that the delivered code will be
maintainable in the future.

● Use Case 4: One is buying a company. One of the major assets is an application.
During the due diligence, one wants to evaluate the technical debt of this software by
using a “on the shield” and independent method.

https://agilealliance.org/introduction-to-the-technical-debt-concept/

The A2DAM list is a ground level list. Its size has been voluntary limited. It should be
considered as a starting point. We encourage (see details below) mature teams or critical
projects to enrich it to suit their context.

One of the goals of the A2DAM list is to be easily verifiable by automated tools. Good
practices which can’t be easily verifiable by tools have been intentionally discarded.

There is nothing new in it; its contents should be familiar to most of the developer
community.

How it has been built
An initial version has been built by the AA Program Team which is formed by members with
recognized experience either in agile development or in source code quality.
This initial list has been sent for review to experts in 16 companies developing static code
analysis tools. 11 of them have provided their feedback about the clarity of the practices, the
associated thresholds, their relevance and tool implementation. The list of experts is
provided in an addendum.

The A2DAM list is available in 2 forms:

● The short form will suit for communication, training, inclusion within a DOD list.
● The detailed form provides details like Rationale, Remediation Cost and Type,

traceability to coding principles, etc. (see below the complete list of fields associated
to each practice).

Table content
Each practice is described by the following fields:

● ID: A prefix + 4 characters identifier for the practice.
● Good practice: A short description of the practice.
● Ground level threshold: Threshold of the measure (when applicable) for ‘ground

level’ developers, based on assumptions like ‘Developers have some coding
experience, they are not novice, they are not champions, ...’ or ‘The developers or
the team owns the code he/she works on’ (see ‘Assumptions’ hereunder).

● Main characteristic impacted: Main characteristic for this practice. This
characteristic is defined in the model provided hereafter.

● Technology: Technologies for which the practice applies. ‘New technologies’ are
defined as: Languages usually found on Agile projects (Java, Javascript, C++, …).
Often but not necessarily Object Oriented.

● Rationale: A short explanation about why a violation of the practice will incur
technical debt.

● Remediation: Suggestion about way(s) to fix the violation.
● Remediation Cost Type: Describe the model proposed for estimating the debt

associated to each debt item.

○ ‘Fixed’: ‘Remediation Cost’ is constant, i.e. the same for each violation to be
fixed.

○ ‘Gap dependent’: ‘Remediation Cost’ is proportional to the difference between
the measured value and the threshold parameter for this practice.

● Remediation Cost: The value(s) proposed for using the proposed debt estimation
model.

● Potential Impact Level: Level of impact on the business when the practice is
violated.

● Remediation Scope: Impact scope of the remediation within the code: line, block,
method, class, file, etc. In most cases, it gives an idea of the amount and type of
tests needed to verify the remediation.

● SOLID: When applicable, the SOLID characteristic associated to the practice. For
instance, ‘Single Responsibility Principle’.

● Simple Design: When applicable, the Simple Design characteristic associated to the
practice: ‘Tested’, ‘DRY’, ‘Clear’, ‘Concise’.

Assumptions of the estimation model
The A2DAM list provides a remediation cost estimation model associated to each practice.
This allows estimating roughly the principal part of the technical debt of your application.

The provided estimation model is based on the following assumptions:

H1: Development is performed in an Agile context.

H2: The check in and check out time in a Configuration Management System (CMS) or a
Control Version tool is negligible. If your network or CMS is slow, you are facing
another type of debt that you should manage.

H3: The integration test workload is not included in the Remediation Cost estimation. This
may be automated and transparent or performed by another team.

H4: Compilation time is not included in the Remediation Cost estimation. Normally
developers do something else during that time. If compilations are "time consuming",
you are facing another type of debt that you should manage.

H5: Remediation Cost covers: coding, unit testing development and debug, and
regression testing update.

H6: Generated code should be excluded. Evaluate your generated code only once and if
needed, improve/fix your generator.

H7: The development team uses the most appropriate IDE for the language. If you don't,
you are facing another type of debt that you should manage.

H8: Developers have coding experience. They are not novices, nor are they expert coders
but they know how to use their development environment effectively.

H9: Developers will understand the issue raised by the Source Code Analysis tool and the
suggested remediation proposed. Either the developer is enough experienced, either
the tool provides some explicit guidance.

 H10: Developers or the development team owns the code they work on. The developer
understands what he/she is programming (or will get a quick support from other team
members).

H11: The estimated Remediation Cost does not cover process specific tasks like updating
UML models, technical documentation, reporting, etc. If needed, you should estimate
such activities separately.

H12: All development, testing, etc. environments/tools are up to date and perform well. If
not, you are facing another type of debt that you need to manage.

Impacted characteristic
As shown in the following diagram, they are numerous dependencies between all software
quality characteristics. As an example, a practice violation that affects the testability of a file,
will also indirectly affect its reliability, changeability, maintainability etc. So in our A2DAM
table, we restrict the impact of a practice at the most direct impact and we don’t list other
indirect impacts.

How to use it
1) If you use the A2DAM in the context of the Use Case 1 listed previously

The first step is to set criteria for the DOD of your project. You may have a DOD at sprint
level and another one at release level. You use the A2DAM list for your list of practices that
generate technical debt when they are violated and as a model to estimate the total amount
of technical debt of your software.

We suggest then to set 2 separate criteria:

● One regarding the amount of technical debt. This should be used to limit the principal
of the technical debt. This should be established as either as a density per new lines
of code, or a ratio between your technical debt and the time spent on the project. As
example:

○ Sprint level DOD criteria : 10 % (technical debt/dev time).

○ Release level DOD criteria: 5%.
● One regarding the nature, the type of technical debt. This should be used to limit the

impact of the technical debt. As an example:
○ No violation incurring “Very high” impact.

As said before, one of the goals of the A2DAM list is to be easily verifiable by automated
tools.

The second step is to implement the list and the estimation model within an automated
solution to make sure that the identification and analysis of technical debt could be
performed as much as needed and does not require specific effort. Make sure that the
technical debt analysis results are available to every stakeholder of your project. Good
visibility and good analysis capabilities of the Technical Debt are key success factor. Use the
“Potential Impact Level” and “Main characteristic impacted” attributes provided into the
A2DAM to analyze the distribution of your technical debt.

From that point, agile principles and practices will ensure that the relevant decisions
regarding the technical debt will be performed within your context. Refer to our document
“Project Management and technical debt” to get suggestions at Release, Iteration and Story
levels.

2) If you use the A2DAM in the context of Use Case 2 listed previously
Start to introduce the “SOLID” and “Simple Design” principles. Then present the main
attributes provided with each practices of the A2DAM. Finally, present the list of practices
and explain some of them with real code to make the presentation more concrete.

3) If you use the A2DAM in the context of Use Case 3 listed previously
Include the A2DAM into the contract with your outsourcer. Set associated goals for the code
to be developed. As example:

● Acceptable technical debt ratio: < 5%.
● Acceptable impact of the technical debt: No violation with “Very high” impact.

4) If you use the A2DAM in the context of Use Case 4 listed previously
Analyze the software to be acquired using the A2DAM.

● If the resulting technical debt ratio is over 15%, it is likely that the code will be difficult
to change and to maintain.

● If the resulting technical debt ratio is over 30%, it is likely that the code will be more a
liability than an asset.

You may complete your analysis with other information like:

● Amount of technical debt associated to “Very High” impact violations.
● Amount of technical debt associated to Testability related violations.

How to extend it
During each retrospective of your project, one will find opportunities to improve the initial list
by:

● Adding practices into one’s Definition of Done.
● Tailoring the estimation model based on real feedback data.
● Changing practice thresholds.
● Removing practices which are not relevant into your project’s context.

When one’s project has high level expectation regarding characteristics like reliability or
security, it will be especially relevant to add dedicated practices to better cover this specific
goals.
For such situations, you can find help with more complete and more dedicated lists like the
MISRA rules (dedicated to the automotive market) and the CERT rules (dedicated to
security).

Acknowledgements

The Agile Alliance group 'Managing the Technical Debt' would like to
thank the reviewers from software vendors who collaborated to the
edition of the Agile Alliance Debt Analysis Model

BUGSENG / Reviewer: Roberto Bagnara

Buguroo / Reviewer: Isaac Cruz

Cast software / Reviewer: Luc Béasse

GrammaTech / Reviewer Roger Scott

Hello2morrow / Reviewer: Alexander von Zitzewitz

NDepend / Reviewer: Patrick Smacchia

Optimyth / Reviewer: Juan Pablo Tejela

Rogue Wave Software / Reviewer : Mike Bessuille

Security Reviewer Limited / Reviewer: Tim Moses

SonarSource / Reviewer: G. Ann Campbell

http://www.misra.org.uk/MISRAHome/WhatisMISRA/tabid/66/Default.aspx
http://www.cert.org/

Squoring / Reviewer: Patrick Artola

	Acknowledgements

