
1

Magic Pillars of High Performing Lean and Agile Development Experience

Carsten Ruseng Jakobsen
Systematic Software Engineering

crj@systematic.dk

Tom Poppendieck
Poppendieck LLC

tom@poppendieck.com

Abstract

Systematic Software Engineering works at CMMI

level 5 and uses Lean Software Development as a
driver for optimizing software processes. Previously
reported pilot projects showed productivity on Scrum
teams almost twice that of traditional teams with 40%
fewer defects. Systematic has used Lean to improve
their software development. Experiences from
monitoring projects using Systematics optimized
processes, has revealed an insight into key aspects in a
project that are critical for successful execution. These
aspects are rooted in Lean mindsets supported with
agile practices. Our experiences show how to diagnose
and drive the different key aspects. These experiences
are easily transferred to agile companies not working
with CMMI. The experiences also show important
lessons learned on how to combine team retrospective
learning with organizational learning.

1. Introduction

Since 2005, Systematic has used Lean principles
and Lean Software Development to optimize how
projects are executed. Initially this led to the adoption
of Scrum and an agile development process with focus
on early testing. Several years of monitoring projects
using these processes has revealed that whenever a
small number of pillars or hallmarks are ensured in a
project, it will succeed.

The experiences presented represents the result of
applying a subset of all the advice given in the three
books “Lean Software Development”, “Implementing
Lean Software Development” and “Leading Lean
Software Development”. The experience is valuable
because it indicates the 5 most important aspects in a
typical software development project Systematic has
found.

For a specific project it can be difficult to select
what aspect to start with or focus on. Imagine a magic
magnet swing over the books which is designed to
attract the 5 most important aspects to focus on for that
specific project. The experiences from Systematic
during the past years, has been such a magnet, for a

typical project in Systematic. Inspired and driven by Lean
thinking, we have continuously improved our process. In
retrospect, we realize that these improvements led us to
select a few Lean mindsets, and establish simple practical
objectives to visualize to what degree these mindset are
implemented.

The most important objectives are the following:
1. Fix time of failed build must be less than a

workday
2. Development of stories must have a flow of

at least 50%
3. Defects must be found and fixed early so that

final test and release for a typical sprint
delivery takes less than 10% of the iteration
(3 calendar days for iterations of 1 month
duration)

4. Teams must be co-located, empowered and
organized to achieve a size of 5+/-2

5. The velocity of elaboration of features
(making them READY) must be at least the
same as the velocity of implementing
features (making them DONE).

Experiences from Systematic indicate that these 5

objectives have the properties:
• Successful projects will achieve the

objectives.
• Troubled projects will fail on at least one of

the objectives
• Objectives are meaningful to the team the

and team can relate to them

This paper presents why these experiences work in

Systematic, what mindsets from Lean and Agile they are
rooted to and what agile practices support them. Finally
we describe how Systematic has established this learning
in a combination of project retrospective and
organizational learning.

2

2. Lean inspired improvements

2.1. The company

Systematic was established in 1985 and today
employs more than 450 people worldwide with offices
in Denmark, Finland, USA and the UK. It is an
independent software and systems company focusing
on complex and critical IT solutions within
information and communication systems. Often these
systems are mission critical with high demands on
reliability, safety, accuracy and usability.

Customers are typically professional IT-
departments in public institutions and large companies
with longstanding experience in acquiring complex
software and systems. Solutions developed by
Systematic are used by tens of thousands of people in
the defense, healthcare, manufacturing, and service
industries. Systematic was appraised 11 November
2005 using the SCAMPISM method and found to be
CMMI level 5 compliant. During 2006 Systematic
adopted Scrum and a story based early testing
approach to software development and achieved
significant positive results that were reported in [X].
This work also resulted in experiences regarding how
Scrum fit together with other CMMI driven processes,
and these experiences were reported in [Y]

2.2. Lean Software Development analyzed

Systematic made a strategic decision to use Lean as the
dominant paradigm for future improvements after
achieving CMMI level 5. Lean has demonstrated
notable results for many years in domains such as auto
manufacturing, and due to its popularity, has been
adapted to other domains, including product and
software development. Systematic identified Lean
Software Development [Z] as the Lean dialect most
relevant to Systematic.

Applying Lean Software Development, as a driver
for future improvements in a company appraised to
CMMI level 5, depends on the adoption of a lean and
agile mindset in the implementation of the CMMI
processes, and Systematic placed special focus
implementing the Lean change in the spirit of the Agile
Manifesto.

Lean competencies were established, through
handing out handout of books, formal and informal

SM Capability Maturity Model Integration, and
SCAMPI are service marks of Carnegie Mellon
University

training, and walk-the-talk activities. Project Managers
were trained in Lean Software Development, and Mary
Poppendieck visited Systematic to present a management
seminar on Lean Software Development.

This seminar established a first understanding of a
Lean mindset. The causal dependencies between the
principles and tools in Lean Software Development were
analyzed, and resulted in the model presented in Table 1.

The model groups the thinking tools from Lean
Software Development into categories: Engineering,
Management and People. Furthermore the elements are
arranged according to causal dependencies, where
elements to the right depends on one or more elements to
the left. These dependencies has been simplified into four
phases named: Value, Flow, Pull and Perfection. The
model facilitated a way to prioritize what thinking tools to
focus on. Left most tools were considered good candidates
to start with.

2.3. Systematic Lean experience

The above analysis of Systematic improvement
opportunities and Lean causal dependencies led to the
decision to seek improvements based on the Lean
Software Development principles of Build Integrity In,
Amplify Learning and Deliver Fast. These Lean Thinking
tools led to the adoption of Scrum and early testing.

In the period December 2005 – December 2006
Scrum and a development method with a strong focus on
early testing was adopted. The following years has
continued to focus on lean inspired improvements, and
experiences from many projects has been accumulated.
These experiences has identified that a few key-aspects
can be identified for each row in the model shown in table
1. The five objectives described in the introduction, are
key to successful implementation of the Lean thinking
tools related to Engineering. The Prince2 described
collaboration between Sponsor, SuperUser and Supplier is
essential for the Lean Thinking Tools related to
management and can be monitored with objectives on
customer attendance to steering group and sprint review
meetings. Finally the Lean Thinking Tools related to
People depend on empowered teams with self
determination. An indication of empowerment is to let
senior management analyze the sprint goals defined for the
teams, to determine whether the goals are true goals, or to
what degree they are a list of tasks.

3

Value Flow Pull Perfection
Engineering P6 Integrity

T19 Refactor
T20 Test

P2 Amplify Learning
T5 Synchronization
T4 Iterations

P2 Amplify Learning
T3 Feedback
T6 Setbased
development

P6 Integrity
T18 Conceptual
T17 Perceived

Management P1 Create Value

T1 Find Waste
T2 Value Stream

P4 Deliver Fast

T11 Queue Theory
T12 Cost of delay

P7 See the Whole

T22 Contracts
T21 Measures
T10 Pull

P3 Defer Commitment
T7 Options thinking
T8 Defer commitment
T9 Decision making

People P5 Empower team
T16 Expertise

P5 Empower team
T14 Motivation

P5 Empower team
T15 Leadership

P5 Empower team
T13 Self determination

Table 1 Lean Software Development arranged after causal dependencies

.
Project improvement vs org. improvements
Improvement requires baselines
Baselines require measures (objective data)
Performance baselines are done using statistical

methods, e.g. control charts
Who does the studies and makes the process

changes

STOP READING HERE

3. Driving and measuring Lean mindsets

The two measures “fix-time-after-failed-build” and
“flow-of-implementation-of-story” are established
using the disciplines from CMMI and using statistical
process control techniques. These techniques helps to
understand the natural variation in the measures, and
thereby helps to focus on the largest or most special
causes of variation. These causes are addressed and
resolved with an attitude based on Lean and agile
values, where management in a respectful way
supports the projects in eliminating them. The focus is
on the system as a whole, and how to improve it based
on the insight achieved through the measures.

3.1. Time to fix failed builds

The main reason to measure how long time it takes
from a build fails on the shared build server until next
successful build, has to do with speed and quality. If a
defect or a problem is not addressed immediately after
it is identified, rework will accumulate and it will be
difficult to deliver a sprint with high quality and
maintain a high velocity.

These two projects focused very early on reducing
the calendar time spent on final verification testing of
the sprint delivery and reduced systematically the time
for sprint test to 1-2 calendar days. The test of the

sprint delivery can only be completed in this short time, if
defects are fixed as soon as they are surfaced

The measure “Fixtime after failed build” is the
number of working hours from when a defect is identified
on the shared build-server and until that defect is fixed and
the shared build is successful. Applying this measure on
the projects combined with an objective that the fix-time
should be at most one working day, helped to build the
Lean mindset of fixing a defect immediately.

the build-servers on a project automatically log the
status of a build to a shared database. Feedback to the
project team on build status is handled immediately with
CruiseControl. Accumulated data for all projects are also
shown on a computer screen next to the coffee machine.

Periodically the data are collected by management
and analyzed for statistical process control and included in
the monthly project review with the project manager.

The measure helped establish focus on what the
impediments are, by addressing special causes of
variation, that is causes for broken build fix times that
exceed natural variation. Insight into the natural variation
was established through the use of statistical process
control techniques.

The figure below shows the fix-time for failed builds
on one of the projects with an average fix-time of 1,6
hours and an upper control limit on 7 hours.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

Fix-time after failed build for Finance (15-09-08 - 15-12-08)
Fix-time (X)

UCL-X

LCL-X

CL-X

4

Figure 2 Time to fix a failed build

The graph, shows for illustrative purposes one
data point exceeding the control limit with a fix-time
of 7,5 hours. For each data point exceeding the upper
control line it is asked whether there is a special cause,
causing that particular fix of a broken build to take
longer time. It is judged whether the cause is special
and could be removed, or whether the cause should
have been anticipated.

How the cause is categorized is not the most
important part here. What really matters, is that these
data points are systematically addressed to surface
impediments and motivate reflections on how to
eliminate these impediments.

Such outliers found surfaced different
impediments like:

1) The reason for the failed build is related to a
special competence. The team member who
posses this competence the best is out of
office for two days, and we will let him fix the
defect when he is back in office

2) The disk on the build server ran full, and
caused unanticipated rework

3) Misunderstandings of how the test
environment was setup

4) A commercial off the shelf (COTS) product
failed

Uncovering these reasons, are used actively by the
programme above the project. In the first case, it was
re-evaluated how many team members to train in this
special competence. In the second case the general
configuration of build servers shared by all projects,
were reevaluated for disk capacity requirements. In the
third example training in the projects infrastructure
were re-emphazised.

The general experience is that the outliers are
often caused by issues, that if not addressed will cause
impediments for future sprints, and a measure like
“fix-time for failed build”, will help to ensure that
these impediments are identified and resolved.

3.2. Story Process Efficiency

In Lean, a steady flow is desired from customer
requests a service and until that request is fulfilled. The
flow in typical software development projects will
often consist of at least three different types of
potential waiting time:

1. Imposed waiting time from the contractual
agreement: The amount of requested work in
the contract exceeds agreed and anticipated
production capacity or team size. This is the

typical situation for fixed price/scope projects,
and addressed by the Product Owner in Scrum
who ensures that work is prioritized according to
customer value.

2. Waiting time incurred as part of preparing work
to be implemented in a sprint.

3. Waiting time incurred during implementation of a
story in a sprint.

The contractual agreements with customers will vary,

and may be mandated by legislation that makes it difficult
to change. Improving imposed waiting time in contracts,
can only be achieved in close collaboration with the
customer. However the projects have full control to assure
that once work is committed, then it is delivered in one
smooth flow. To support that objective, flow of story
implementation is measured.

Systematic decomposes requirements in the contract,
into a set of features. Each feature is decomposed into one
or more stories, that will deliver customer value. Stories
are allocated to a sprint and then implemented and
delivered to the customer.

From a Lean perspective, we want to eliminate the
waste associated with context shift or waiting. Therefore
we strive to ensure that when work is started on a story,
then it is implemented without any interruption or waiting
time.

Assume a story is estimated to be 3 workdays of
effort. However for various reasons it takes 9 workdays to
implement the story. The flow of this story
implementation is then defined as 3 days calendar time of
work implemented over 9 calendar days, a flow of 3/9 or
33%. This is measured for all stories.

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

140,00%

90 84 87 89 104 100 95 105 101 114 116 2 6 120 121 119 14 27 35 39 43 49 52 57 60 63 72 77 79 148 142 153
Sample ID in Data sheet

Flow for stories in IS 01/01 to 31/12 for Finance
Flow
Avg flow
UCL
LCL
Linear (Flow)

Figure 3 Flow of implementation of story

When we started measuring flow it was around 30%,
but from 2007 to 2008 we have increased this to 59% for
Q4 2008.

Efficient flow eliminates the waste associated with
context shifts and handovers. In addition the team
members find it more satisfying, that work initiated in a
sprint, is sufficiently clarified to allow for a smooth
implementation during the sprint.

5

4. Agile hallmarks and adoption

Based on these experiences the projects decided to
make a recommendation for other projects, that would
help them to achieve the same results.

5. Recommendation

Since 2005 Lean has been used as the primary tool
to improve the CMMI and Scrum way that Systematic
works. Systematic previously reported how Scrum
resulted in significant gains [X].

Inspired from Lean and CMMI, the projects were
measured on fix-time for failed build and flow of
story-implementation.

The measures were analyzed with techniques for
statistical process control, which provides an insight
into natural variation of the projects performances.

This insight was used to address special causes of
variation, and systematically eliminate the reasons
behind them.

Addressing outliers systematically shows directly
in the measures with an average of fix-time of failed
builds in 1,9 hours and an increased flow of story
implementation of 59%.

The indirect consequence, is elimination of
wasting time related to context shifting, and there is a
strong indication that the productivity of these projects
are 140% to 360% better than the average of other
projects in Systematic.

A prerequisite that contributed significantly to
these results, is that these projects had established a
clear understanding of how the product owner work
was organized within the project.

6. Conclusion

Using CMMI, Lean and Scrum together results in
significantly improved performance while maintaining
CMMI compliance.

A lean culture with a disciplined approach, skilled
people, and good leadership can systematically
significantly improve Agile velocity and quality using
proven CMMI 5 level techniques of data driven
assessment and organizational self-tuning. Systems can
be measured and data magnifies learning. Careful
attention must be paid to the human dimension because
poor use of data will destroy productivity.

We have not completed our journey towards
improved performance. The next phase will focus
carefully on cross-functional team interactions and
dynamics..

