
How to conduct a "Senior Management
Review" for Agile Project

Summary
The Software Project Planning KPA of SEI-CMMI Level 2 states that "senior management reviews (SMR)

all software project commitments made to individuals and groups external to the organization".

Therefore, any organization which has or aspires to have a CMMI certification needs to have a SMR

practice in place.

Traditional Agile practices do not have much to offer on how the "Senior Management" can conduct

such review. Can the same practices employed for reviewing other types of project be applied equally

effectively to agile projects? Or, is it necessary to let go of some of the existing practices and adopt new

ones?

At NIIT Technologies we have been executing agile projects since 2003. These projects have been

executed within the SEI-CMMI Level 5 framework as our organization has been one of the first few

companies in the world to be certified at L5. Client engagements have been of several types starting

from time & material project were the project is done by to client to fixed price agile project. Clients

have ranged from large multi-national to large product company to small startups.

The challenges that we have faced include effective risk management, scope control and managing client

expectation.

Based on our experience we feel that some of the practices that need to be reviewed are:

1. Agile practices encourage face-to-face discussion which may not leave any documented trail

which somebody external to the discussion can review. On the other hand, SMR is about

reviewing the status of commitments made to stakeholders external to the organization.

Therefore, how can such review happen?

2. Any project has a defined closure. Since, in agile methodology, the product evolves, there is a

contradiction especially when two organizations are involved. This is a challenge which senior

management needs to look into.

3. Commitments are always made between individuals. What happens when the individual move

out of the project? How will such commitments me met?

Looking at the 3 points mentioned above some amount of formalism is required to document and

monitor the commitment made to the customer. To an agile purist these may be unacceptable but in a

real life situation where two distinct organizations are involved with an agreed contract, it is necessary to

compromised on pure theory. There are 3 dimensions where senior management needs to maintain an

oversight:

a) Risk management – we have a formal mechanism to do the same which is followed for agile

projects also

b) Schedule management – in many projects (even agile project) there is a committed delivery

schedule of the software based on which customer makes downstream commitments.

Sometime, the impact of delay can be much more than the cost of the software.

c) Quality management – not only is it necessary to delivery working software, but it is also

imperative to ensure that the code is maintainable and follows the organization standards and

guidelines

In pure agile practice, these are normally handled by the empowered team. However, the function of

SMR is to verify that indeed to team in on course to meet all the commitments. To do so, we have

arrived at the metrics that need to be tracked and monitored. The list of metrics is longer that what is

normally monitored in a typical agile project.

 Schedule (Calendar Duration in days)

 Effort

 Resource Capacity Utilization

 Burndown

 Velocity (No of Stories Done / Sprint)

 Defect (In-process review and testing Defects)

 Defect / Problem (Found by Customer/Product Owner during Sprint Review)

 Weighted Defect per Story Point

 Code Quality Metrics

The focus of the SMR is to look at the data, look at the trend and identify if there are significant risks in

our ability to meet the commitments made to the customer.

This talk will explain:

1. Why it is necessary to expand the list of metrics?

2. Why we have chosen these metrics?

3. How it helps meet the challenge mentioned earlier?

Annexure

Abstract

Organizations delivering offshore software

development services have traditionally focused on

CMMI framework to deliver quality software. With

agile methodologies gaining more wide spread

acceptance, such organizations cannot stay away

from them. There are concerns about combining

agile methodologies with offshoring. There are also

concerns about mismatch of agile methodologies

with CMMI framework.

In this paper we have looked at the problem from

the perspective of an offshore software development

organization and recounted our experience in

adopting agile methodology in executing fixed price

agile project. The challenges we have faced comes

from three different dimensions. First is to address

the issue of having an agile team split across two

different countries. The second is to execute the agile

project within the framework prescribed under

CMMI. Here the challenge is not only to address the

actual gap between CMMI and agile methodologies

but also to address the perceived shortcomings of

agile methodologies. The third dimension is to

execute the project as a fixed price one where the

requirement is not frozen at the beginning of the

project.

We have listed the challenges that we have faced.

They can be categorized under requirements

management, contract management, team

management, distributed working, when to design,

role of a specialist, testing challenges and CMMI

adherence. The different solutions tried and the

levels of success in overcoming them have also been

included. Our experience indicates that agile

methodologies can coexist with offshoring and

CMMI framework.

Keywords: Agile, CMMI, Offshore, Software

Development Process.

Introduction
Traditionally, software had been used in business to

improve the internal efficiency of an organization. It

has played a major role in increasing productivity

through automation. However, in the last decade and

since the advent of World Wide Web, software is

becoming a significant component of every product and

service offering. Organizations are inherently shifting

their focus from using software to improve internal

operations to using software to increase revenue. To do

so in today’s competitive world, every organization has

to strive to stay ahead of the competition and come up

with innovative products and services. This is a very

volatile process calling for quick changes and have

forced organizations to react to situations faster than

before. Since software forms a key component in most

customer offerings, the software development

methodology also has to keep pace with this changing

scenario.

Traditional software development methodologies have

been more heavy weight and had difficulties in adapting

to situations where requirements either kept changing or

were not clear. As an answer to the challenges of

modern software development, different lightweight

approaches have been established since the mid 1990s

that can be subsumed under the brand Agile Methods

[8-9]. They “allow for creativity and responsiveness to

changing conditions” [10]. They also emphasize on

customer participation, quick reaction to requirements’

changes and continuous releases.

These methodologies are gaining in popularity as

preferred means for developing software as they allow

organizations to deliver software effectively in a

changing environment. This is due to the increased

realization that relying on traditional methodologies

such as the waterfall does not serve the business as the

requirements either change rapidly and usually not well

formed.

Waterfall methodology relies on specifying what the

software should do in a well documented form. The

expected users of the software participate in defining

the requirement. Once the requirement is documented

and signed-off, the software development starts. The

development proceeds through steps like design,

construction and testing. At the end of these steps the

software is presented to the user to validate if it works

as documented.

Agile methodologies focus on the software and specify

that code should be delivered in small chunks catering

to a sub set of the functionality asked for by the user.

The proof of the software developed is a working model

of the software for every chunk defined. Agile tries to

be less documentation intensive and allows more time

for developers to focus on the development of the

software.

Waterfall models focused on documentation, sign offs

and the signed off documents were foundations for the

next step. Agile process believes in constant interaction

with the user and leverages the trust and understanding

that develops in doing so.

Agile process recognizes that business requirements

constantly change and cannot be completely clear

during the ideation stage. Customers usually are able to

specify more clearly once they see a preliminary

working model. Agile process hence focuses on the

flexibility to accept new changes and cater to them

unlike the Waterfall models.

Trend of Offshore Outsourcing

(offshoring)
Business software development began as in house

process done by people inside the organization. Since

software development process is a specialized one, it

may not be a part of the core activity of the

organization. Hence, many organizations outsourced

software development to others who specialized in the

same. Over a period of time, advances in

communication and networking technology made it

feasible to outsource the development work to

geographically distant location. This process could

leverage the cost advantage offered by off-shored

locations. Hence the term offshoring and moving

development processes to countries outside became

popular.

Offshoring plays an important role in today's software

development practice. Though the chief motive for this

relocation is cost reduction through lower wage levels,

there are other benefits viz., increased flexibility,

concentration on a company’s core business and the

employment of qualified personnel not available in

one's own country in sufficient quantities [11]. Not only

does this mean reduced cost, but also chances of

enhancing a product’s functionality that could be

developed for the same budget originally planned for.

Offshoring also proved useful, as large numbers of

trained manpower were readily available in the

outsourced countries. Skill sets in newer and older

technologies could be created in relatively short period.

As off-shoring increased, concerns regarding the quality

and integrity of the development process began to gain

importance. This led to improving process rigor by

standards and certifications. The concern regarding

quality of software produced specially in a domain with

confidential and sensitive data were addressed by rigors

of process certification such as SEI-CMMI [5-6]. This

multi level certification assured organizations on the

quality of service expected.

Since both the trends, of agile adoption and offshoring,

have different set of benefits, organizations would like

to combine them and realize the benefit of both these

trends. However, there are several challenges in

marrying them and these challenges can be broadly

classified into two categories.

1. Most agile methodologies assume collocated cross-

functional team. This is not possible in offshoring.

2. Most organizations who undertake offshore

engagement rely on SEI-CMMI process model.

There are concerns about the compatibility between

CMMI model and agile methodologies.

These challenges have been well researched. However,

most of the research is from the perspective of the

organization which is offshoring the development. Very

little attention has been paid on the special challenges

faced by the organization undertaking an agile offshore

development engagement.

In this paper, we share our experiences from the

perspective of the organization undertaking the

offshored project and the challenges that were faced in

executing it as a fixed price one in agile mode inside

our offshored SEI-CMMI L5 assessed company. We

also detail how these challenges were addressed.

Though we have taken the example of one specific

project, some of our experience stated here spans across

multiple customer projects. In conclusion we list what

worked well and what did not. It is only from the

perspective of the organization undertaking the agile

project and does not cover the perspective of the

organization outsourcing the work.

Profile of Our Organization
NIIT Technologies is an IT solutions organization

based out of India, servicing customers in North

America, Europe, Asia and Australia. One of the

primary focus areas is to undertake offshored software

development and maintenance for clients in the

financial services, insurance, travel, transport, retail,

distribution, and government sectors.

Our software development processes are assessed at

SEI CMMI - Level 5 Version 1.2 and we have over

5000 people involved in different customer

engagements. Around 80% of them are located

offshore. Though our primary method of software

development is waterfall, we have undertaken several

projects where the development methodology followed

is agile.

Different Stakeholders in our

Organization
Apart from the developers engaged in writing the

software, stakeholders in our organization can primarily

be classified into four categories. A business unit head

is responsible for the profitability of the unit and overall

customer satisfaction. The responsibility runs across

multiple projects and customer engagements. The main

concern of the business unit head will be to ensure that

changes in processes do not impact another customer

engagement.

A project manager is in charge of one specific project

and is responsible for defect-free and on-time delivery

of the software within the agreed budget. The

responsibility also includes development team

management, getting new members into the team,

ramping up the team when needed and handling

consequences of team member leaving the organization.

There are also specialized roles in the organization like

architects, designers, business analysts, usability

professionals and testing experts. They are specialists in

their field and sometimes they may be associated to a

specific project for a short duration of time. However,

their responsibility spans across single or multiple

customer engagements. In fact their responsibility may

span across multiple business unit.

Outline of the Project
We executed a project for a customer in US using the

SCRUM development methodology. SCRUM is a

lightweight methodology under the Agile Brand. The

project was executed offshore with the customer located

in US. This project had an aggressive deadline of 90

calendar days and an estimated effort of around 30

person months.

The customer mandated that SCRUM be followed for

project execution as this was the development of a

product and they wanted flexibility to add and remove

features and rearrange the priority. The average

iteration (sprint) duration was 2 weeks and the 5 sprints

were planned. There was an initial pre-game or analysis

phase for a week where the customer came down to

India and interacted with the team. The team size was

10 including the SCRUM master.

Agile and CMMI
The Capability Maturity Model for Software (CMM)

[5-6] developed by the Software Engineering Institute

(SEI) has had a major influence on software process

and quality improvement around the world [7].

Organizations undertaking off-shored work have been

in the forefront by adopting CMM practices and

obtaining assessment for the same. This practice of

obtaining CMM assessment has also acted as a stamp of

quality software delivery. It was initially used as a

differentiator but over a period of time has become a

basic necessity. Therefore, any process change that can

have an adverse impact on the assessment becomes a

great source of risk. So, for an offshore software

development organization, any contradiction between

CMM and agile is a source of great concern.

SEI, the owner of the CMMI model, has realized the

necessity of marrying CMMI framework and agile

methodology. They have come up with an approach

paper looking for CMMI & Agile synergy [3]. They

come to the conclusion that agile methods and CMMI

not only can co-exist, but can also be successfully

integrated to bring substantial benefits to both Agile

and traditional software development organizations.

However, there have been other studies that have

looked at the compatibility and conflict between CMMI

and agile. Some process areas, mainly those of the

maturity levels 4 and 5, are in conflict with agile

principles; agile methods can be applied without any

major adaptation up to level 2 and 3 with some minor

changes [4].

In our organization, the foundation of the software

development process is the ETVX [1-2] model. This

model has good synergy with the waterfall process and

acts as a framework of how work can transition from

one step to the next. It defines the verifications and

validations that are needed to ensure proper flow.

However, this model is in direct conflict with the agile

way of working thereby creating a clear source of

contradiction.

To overcome this challenge we have created a separate

process handbook for executing agile projects.

Agile and Offshoring
The feasibility of undertaking an agile off-shore

development has been studied in depth. The analysis

has shown that offshoring indeed poses special

difficulties for development projects. Agile process

models and practices seem to be appropriate for use in

these contexts but have to be enhanced and adapted to

work well. The direction of research points towards the

conclusion that established practices and tools of

software engineering can be employed to strengthen,

formalize and structure agile offshoring without losing

the flexibility of agile practices and falling back to a

document-driven approach [11]. The focus on customer

collaboration, continuous testing/integration, short

iterations and test-first development seem to be the

most important agile practices [12].

However, most of the study has been from the

perspective of the organization which is offshoring the

work and not from the perspective of the organization

which is undertaking the engagement. Such

organization faces many additional challenges. These

challenges can be broadly categorized into:

1. Team formation: This includes how to quickly

assemble a team and make them cohesive. It also

includes how handle changing team composition

midway either because of attrition, need for scale

up or for the need to bring in specialized skill.

2. Heterogeneous environment: This includes how

team members can move between agile and

waterfall projects and how management can have a

uniform view of project status spanning different

methodologies and measurement standards.

Some of these challenges can be attributed to

perception and can be addressed through education and

training. However, there are several real challenges

where standard solutions don’t exist and each

organization has to formulate its own answer. In the

later sections we list out the challenges that was faced

and how we attempted to solve them.

Real and Perceived Concerns
In spite of the advances made in software engineering

discipline, software development remains primarily to

be a people oriented activity where automation plays a

limited role. Tools, techniques and processes have

reduced the effort involved in writing software and

have made the process more predictable. However,

software has become all pervasive and has increased in

complexity. There is increasing pressure to complete

software projects in shorter and shorter time cycle.

Therefore the dependence on people has remained.

Most people in our organization are used to following

waterfall or a variant of waterfall methodology. Agile

adoption requires a change in mindset. To make

fundamental change in the way people work has always

been a big challenge. To keep switching between two

different methods of working is a bigger challenge. It

requires people to change, to modify the way they work

and alter their thinking process. It not only affects the

people who are directly engaged in writing the software

but also those involved in managing the project,

interfacing with customers and those responsible for

running the business. In short, there are multiple

stakeholders in the organization who will look at this

change from different perspectives and ask questions

and raise concerns. Each of these questions and

concerns may be real or perceived but need to be

handled. Real concerns are directed either towards the

process gaps not addressed by agile or towards

contradiction between agile & CMMI. Perceived

concerns are raised due to resistance to change.

Being a CMMI Level5 organization requires that

establishing a organization wide process consistent with

the CMMI model. These processes need to be created,

updated from time to time and adherence to the

processes needs to be ensured. This is the primary

responsibility of process owner and this responsibility

includes ensuring all projects work within the laid down

framework of CMMI.

In the following section, we examine all the major

questions and concerns raised by the stakeholders and

how we have attempted to address them.

Requirement Management
In any outsourced software development engagement

change in the scope of work can have cost and schedule

implications. The impact of the change on the

organization which has undertaken the outsourced

development depends on how the contract is

formulated. There are two dimensions to it:

1. Is the contract based on a fixed price or on time

and material?

2. Is the offshore organization responsible for the

schedule?

If the payment is on a time & material basis and the

organization who has outsourced the work takes

responsibility of managing the schedule, then the

offshore organization has very limited concern about

the development methodology followed and about the

scope of work.

When the schedule management is shifted to offshored

organization, there is concern about the scope of work.

However, the concern is limited to the delivery

commitment. If the contract is on a fixed price basis,

then in addition to the concern about delivery

commitment there is concern about managing the

profitability. Since the project addressed in this paper

was a fixed price project, we are examining both these

concerns.

The scope of work is directly related to the stated

requirement. In a typical project following waterfall

methodology, the requirement is explicitly documented

and mutually agreed before the software development

work starts. However, agile development methodology

is designed for changing requirements and it gets

refined over iterations. This leads to the concern that

the scope of work can increase affecting profitability

and delivery commitments; a concern for the business

unit head and the project manager respectively.

We minimized this risk by taking the following action:

1. Focus on business value rather than a fixed set of

requirements

Waterfall methodology focuses on the documented

requirement where as agile methodology focuses

on delivering business value. In waterfall it is very

much possible to complete a project within budget

and on schedule and not fulfill the business need

for which the software was intended.

In agile methodology, each iteration delivers

working software which can be validated by

business users. The iteration planning process can

take into account the business priority. The features

can be fine tuned and it can reflect any change in

business need. Therefore, usable software can be

made available midway through the project. As a

corollary it is also possible to predict project failure

much early on, thereby minimizing wasted effort.

2. Exchange request rather than change request

Any change which does not impact the schedule or

effort can easily be handled. Changes which impact

either the schedule or the total effort needs to be

handled using ‘exchange requests’. The customer is

free to add any new requirement provided he is

able to remove any lower priority requirement of

similar size which has not been worked on from the

existing list. The customer is also free to decide the

priority in which the features have to be worked on,

before iteration. In case the customer has an

additional requirement which is essential to them

and cannot be exchanged with any other, then we

follow the traditional change management process.

3. Feedback from working code rather than from

extensive documentation

A common problem in waterfall projects is scope

creep resulting from improper or ambiguous

articulation of requirements. This leads to a

situation where the customer’s expectation from

the final software differs from what the project

team thinks that it has to deliver. This either leads

to disputes or the project team agreeing to the

increased scope.

Our experience with this in SCRUM has been that

since the scope is fixed for an iteration, which is of

a short duration typically 2-4 weeks, it is easier to

articulate the requirements with a high order of

clarity. We had also tried to mitigate this risk

further by involving the entire team during the

initial iteration discussions, so that there is minimal

chance for misinterpretation that also could get

corrected through an established feedback loop.

Contract Management
One of the four principles of agile manifesto is “Trust

over Contract negotiation”. This principle works fine

when there is no major dispute. The point to remember

is that you have trust between people and not between

organizations. When two organizations are involved,

there has to be some contractual obligation, about what

software is to be delivered and how the work is to be

compensated. In addition there has to be an agreement

on what will happen when things do not go as planned.

Our experience shows that if both the organizations are

clear about the principles of agile methodology then the

process of contracting for a specific project can be

significantly simplified. However, following item needs

to be included.

- Payment schedule: We have found iteration based

payment schedule to be most suitable

- Termination clause: It can happen when project is

found to be nonviable mid way. It can also happen

if the project has delivered enough business value

before completion.

- Handling scope increase: The business goal needs

to be clearly stated and the concept of exchange

request needs to be included.

Dispute about the scope of work can happen when there

is an improper understanding or elucidation of the

requirement. It also arises when there is improper

communication or there is a change in people involved

in the project. One of the areas of concern is that since

there is less emphasis on documentation, it will be

difficult to establish who is right.

Our experience shows that because of short iteration

and regular received feedback on the working code we

have been able to quickly resolve disputes and reach

consensus. However, maintaining customer trust is very

important factor is managing disputes and preventing

minor issues turning into a major one.

Team Management
Between waterfall and agile, there is a clear difference

on how the project teams are constituted and managed.

In waterfall, the team composition may significantly

vary from phase to phase. For example requirement

analysis is expected to be handled by business analyst,

design phase is to be handled by architects and

designer, the coding phase is to be handled by

developers and the testing phase by the testers. The

team composition and size is expected to change from

phase to phase. There is a clear handover between

phases and in each phase the members are supposed to

take over from where the other phase ended. During the

construction the developers are expected to follow the

design and code as per the given specifications. The

process is also designed to allow for people

interchangeability so that if people leave the project

team then new people joining the team can gather the

required knowledge from available documentation.

On the other hand, agile methodology assumes a stable

and multi-skilled team. The team has had a flat

structure with the same team retained as much as

possible during the life cycle of the project. The team

essentially consists of a fixed number of people who are

preferably inducted from the start of the project. They

carry a lot of implicit understanding and knowledge of

what has to be delivered. Therefore, replacing a team

member becomes more challenging. Such a situation

can lead to a definite drop in productivity that can

impact the project plan. The problem gets compounded

because of the necessity of having to deliver working

code in short cycles, which reduces the time buffer

available for recovery.

Our experience shows that this is a real challenge. We

have tried several measures to overcome this problem.

- Build about 10% redundancy in the team

- Use peer programming for all the critical part of

the software

- Identify backup for each member of the team

As opposed to the typical waterfall team where the

organization is hierarchal and managed top down, the

agile team is expected to be self learning, self-

managing, proactive and motivated. The agile coach is

only expected to mentor and guide. It is imperative that

the team members are comfortable with one another

and have a good rapport. That makes induction of a new

team member more challenging. So, apart from

technical and functional knowledge transfer, the new

member has to build a good rapport with the rest of the

team.

We have tried to address this problem by identifying

members who have previous experience of working

together. However, in the context of a large

organization, it may not always be possible to identify

such people. Quiet frequently, a new team member may

also have to come from outside the organization. We

have not found a satisfactory solution to this challenge.

The members of the agile team are also expected to be

multi-skilled and be able to do analysis, design,

development and testing. They are also expected to be

mature enough to be self motivated and capable of

interacting with customers. We have found this to be

another challenge as the level of experience in the team

can vary. The team can contain both developers with

many years of experience and developers fresh out of

college with no work experience. While we tried to

staff the team with a set of mature developers, it took a

few iterations for the team to settle down and achieve

the required rapport.

We found that the success of an agile project depends

on the extent of cohesiveness or bonding in the team.

Our experience is that team attrition, ramp up, new

member inductions are real problems in agile project

and we have not been able to find a satisfactory

resolution to the same.

Distributed Working
The challenge of having a distributed agile team has

been well documented. The team distribution can

happen in one of the two ways.

1. The development team is split across two different

locations

2. The development team is co-located but the

product owner is in a different location

In our project, the development team and the SCRUM

master were located in India but the product owner,

who belongs to the customer organization, was located

in USA. For us the key challenge was in establishing a

communication channel with the customer, such that it

was possible for any development team member to

access them for quick query resolution and free

exchange of ideas. We avoided the alternative of

routing all queries through a single point of contact as it

would have become a source of bottleneck and would

run counter to the philosophy of having a self

organizing team.

There was an initial meeting when the entire team from

both the organizations spent one week at a single

location. It established familiarity between all the

members of the team and was a significant help for

smooth interaction in the future. We used instant

messaging software to enable any team member to

communicate with the customer. Periodic Video

conferencing and use of voice chats also kept the

regular communication channel open. We also

requested the customer to be a silent attendee to the

daily stand up meetings over a voice service. Apart

from this we also had weekly status reviews to monitor

progress.

These mechanisms helped us to increase the trust

quotient as we were able to perceive ourselves as an

extension of the customer’s team rather than a vendor

executing a project.

When to Design
One of the main aims of agile methodology is to keep

delivering working code in each sprint. This raises the

concern that in agile project no software design is

needed and developers directly write code. In other

words, since all iterations need to produce working

code, when does design actually happen?

Our approach was to have an evolving design where the

design evolves with every sprint. The starting point was

to get an agreement on the initial architecture. Creating

a reference implementation showcasing the key features

of the architecture was the next step. A reference design

document was also created. Subsequently this was used

as a blue print to build the rest of the software.

In parallel to the actual software development, the

architecture was refined incrementally. In some cases

we had to try out more than one design alternative to

choose the best one. These were taken up as individual

iterations with each alternative being translated into

working code in order to evaluate them. But

incremental design also meant that there were design

decisions taken at a later point in time which involved

significant code changes especially to already

developed code. These had to be handled and this

involved rework.

Role of Specialist
An agile team is supposed to be multi-skilled. However,

a typical software organization has role specialization.

There are specialist roles like architect, business

analysts, user interface specialist and testers etc. These

people have specialized knowledge which is expected

to be utilized by projects when needed. Such knowledge

may not be required for the entire duration of the

project. In agile methodology there is no formal

mechanism to request such expertise and bring them in

for a short duration. Even if such members are brought

in to the project, they may have problems similar to a

new team member about gaining an understanding of

the requirement.

Though there may be a debate whether such roles are

required, our experience suggests that specialist

knowledge is essential irrespective of the methodology

being followed. For example, an architect may join the

project to create the reference implementation and set

the technical direction for the project. The agile team

members need to have a certain degree of technical

understanding and maturity to take on from the

architect once the base framework is in place. Some

amount of formalism in form of documentation needs to

be introduced to record the recommendations and

decisions of the specialist.

The project in discussion did not require any specialist.

However, in other projects there have been

interventions from architects who created the initial

reference architecture in the initial sprints. In such

cases, the team would take over the architecture and

one person from the team would become the custodian

of the core architecture who would make incremental

improvement based on the further need of the project.

Where ever possible we also ensured that the architect

was available for consultation during the duration of the

project in case the team needed assistance.

Similar approach can be followed when ever

specialized knowledge is required and a specialist has

to contribute to the project.

Testing Challenges
Following agile practices like SCRUM with short

iterations meant that testing was a big challenge and

there was a fear that the software was not adequately

tested especially during the later iterations when the

software size increased quite a bit. Automated Testing

and Test Driven Development have been recommended

as the way out by experts. However, we feel that these

solutions only partially address the issue.

In some of the agile projects, we have tried to automate

the testing using tools like JUnit and during later sprints

introduced regression testing tools to ensure that that

there was no regression bugs. However, the very nature

of iterative and incremental development with

evolutionary design meant that there were some design

changes which involved a rework in previously released

features. This required an end to end testing, not all of

which could be automated. We had to have sprints

called stabilization sprints which did not have any new

feature addition but were dedicated to testing and bug

fixing.

In most cases, before the software could be released to

production use, it had to undergo a series of additional

tests like performance testing, stress testing and security

testing etc. Since these tests required specialized

knowledge and specialized testing environment they

were kept outside the scope of the project. Typically it

was handled by the customer where we provided the

support to fix the bugs.

CMMI adherence
Since we are a Level 5 CMMI certified organization

there was a need to audit our agile project according to

the organizations prescribed process framework. The

primary concern of the process group was that

following agile practices meant cowboy style of

programming with no processes in place. Our

experience indicates that it is not the case. SCRUM

requires a lot more discipline than waterfall as the team

members have to be disciplined to deliver at the same

velocity or higher for every sprint.

CMMI prescribed that there had to be documented

evidence like minutes of the meeting, while SCRUM

primarily relies on oral communication during the daily

standup meetings. We were unable to address this issue

as we did not want to add to the project overhead and

only critical decisions taken in meetings were

documented. We also saw that agile practices like

SCRUM do not address the engineering aspects like

configuration management, testing strategy, exploring

design alternatives etc. So for these areas we adopted

the CMMI practices recommended by our

organization’s Quality Management System (QMS).

We observed that we are able to meet most of the Level

3 KPA’s in intent if not exactly by practicing as per the

organization’s recommended standards. But the CMMI

Level 4 KPA’s relating to measurement of detailed

metrics was especially not addressed in SCRUM. The

only metrics that we were capturing was the team’s

velocity with respect to Level 5 KPA’s of continuous

improvement. While SCRUM extensively talks about

causal analysis and improvement at the project level,

innovation at the organization level is not addressed.

The causal analysis was practiced in the form of the

sprint review meeting held after every sprint where we

reviewed the sprint and identified areas for

improvement.

In summary, we noticed some gaps and conflict

between agile methodology and CMMI framework. In

both cases, CMMI prescription took precedence of agile

recommendation.

Conclusions
The trend of adopting agile methodology is gaining

momentum. Organizations providing offshore software

development services cannot remain away from this

trend. Though there are challenges, some real and some

perceived, that needs to be overcome; we feel that it is

possible to successfully adopt agile methodology for

offshoring.

We are yet to use agile practices in large projects.

Experts recommend execution of large projects by

breaking them into smaller teams and following

SCRUM in all the teams, but we have not tried out the

same.

We have observed that for agile projects to be

successful we need the customer and the execution

team to believe in the agile way of working. Constant

customer involvement is a must without which the

project is doomed to fail.

We also observed that in the typical software services

industries, the developers take some time to adjust to

the agile way of working and find that it is more

challenging.

Agile execution also means that teams have to be

mature and well trained while in reality it is difficult to

staff projects completely with such resources. So this is

an area of concern for large scale adoption.

Agile processes like SCRUM do not talk much about

engineering practices and it is left to project teams to

ensure that good engineering practices are followed.

Release testing is an area where again it is left to the

project teams to adopt suitable practices to ensure

quality of deliverables. Stabilization sprints dedicated to

converting ‘potentially shippable’ to ‘shippable’

deliveries are a reality.

While we as an organization are adopting agile

practices wherever the customer mandates it, it is not a

development methodology of choice if we are given the

freedom to choose the execution approach.

Contracting for an agile project still has to achieve the

kind of standardization that a waterfall execution

currently has.

Overall we find that following agile practices definitely

delivers business value to customers.

References
[1] R. A. Radice & R. W. Phillips. “Software

Engineering: An Industrial Approach”, Prentice-

Hall, 1998, ISBN 0138232202

[2] R. Radice, N. Roth, A. O’Hara Jr, W. Ciarfella.

“A Programming Process Architecture”, IBM

Systems Journal 24(2): 79–90, 1985

[3] Hillel Glazer, Jeff Dalton, David Anderson,

Mike Konrad, Sandy Shrum. “CMMI® or Agile:

Why Not Embrace Both!”, Technical Note,

CMU/SEI-2008-TN-003, November 2008

[4] M. Fritzsche, P. Keil. “Agile Methods and

CMMI: Compatibility or Conflict?” e-Informatica

Software Engineering Journal, Vol. 1, Issue 1,

2007

[5] S. E. Institute. Capability Maturity Model

Integration (CMMI), Version 1.1

(CMMISE/SW/IPPD/SS, V1.1). Technical report,

Software Engineering Institute, Carnegie Mellon

University, 2002

[6] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V.

Weber. “Capability Maturity Model”, Version 1.1.

IEEE Software., 10(4):18–27, 1993

[7] M. C. Paulk. “Using the Software CMM With

Good Judgment”. ASQ Software Quality

Professional, 1(3), 1999

[8] K. Beck and C. Andres. “Extreme Programming

Explained: Embrace Change”. Addison-Wesley,

2nd edition, 2004

[9] A. Cockburn and J. Highsmith. “Agile Software

Development: The People Factor”. IEEE

Computer, 34(11):131–133, 2001

[10] M. Doernhoefer. “Surfing the Net for Software

Engineering Notes”. SIGSOFT Software.

Engineering. Notes, 31(1):5–13, 2006

[11] J Sauer. “Agile Practices in Offshore

Outsourcing – An Analysis of Published

Experiences”, IRIS 29, Helsingborg, Denmark,

2006

[12] V Sachdev and K Iyengar. “Will Agile

Methodologies work in Offshore Outsourcing”

SWDSI07 San Diego, USA, 2007

