
IBM Software

Design and development

Thought Leadership White Paper

Disciplined Agile Delivery:
An introduction

2 Disciplined Agile Delivery: An introduction

Make no mistake, agile is not a fad. When mainstream agile
methods such as Scrum and Extreme Programming (XP) were
introduced, the ideas contained in them were not new, nor were
they even revolutionary at the time. In fact, many of them have
been described in-depth in other methods such as Rapid
Application Development (RAD), Evo, and various instantiations
of the Unified Process, not to mention classic books such as
Frederick Brooks’ The Mythical Man Month. It should not be sur-
prising that working together closely in co-located teams and
collaborating in a unified manner towards a goal of producing
working software produces results superior to those based on
working in specialized silos concerned with individual rather
than team performance. It should also come as no surprise that
reducing documentation and administrative bureaucracy saves
money and speeds up delivery.

Agile was once considered viable only for small, co-located
teams; more recently, improvements in product quality, team
efficiency, and on-time delivery—all attributable to agile
practices—have caused larger teams to take a closer look at
adopting agile principles in their environments. A recent study
conducted by the Agile Journal determined that 88 percent
of companies, many with over 10,000 employees, are using or
evaluating agile practices on their projects. Agile is truly poised
to become the dominant software development paradigm. This
trend is also echoed in other industry studies, including one con-
ducted by Dr. Dobb’s Journal which found a 76 percent adoption
rate of agile techniques, and within those organizations doing
agile, 44 percent of the project teams on average are applying
agile techniques in some way.

Unfortunately, we need to take adoption rate survey results with
a grain of salt: A subsequent Ambysoft survey found that only
53 percent of people claiming to be on “agile teams” actually
were. It is clear that agile methods have been overly hyped by
various media over the years, leading to abuse and misuse; in
fact, the received message regarding agile appears to have justi-
fied using little or no process at all. For too many project teams
this resulted in anarchy and chaos, leading to project failures and
a backlash from the IT community that prefers more traditional
approaches.

Properly executed, agile is not an excuse to be undisciplined. It is
clear that the execution of mainstream agile methods such as XP
have always demanded a disciplined approach, certainly more
than traditional approaches such as waterfall methods—don’t
mistake the high ceremony of many traditional methods to be a
sign of discipline, rather it’s a sign of rampant and often out-of-
control bureaucracy. However, mainstream agile methods don’t
provide enough guidance for the typical enterprise. Mature
implementations of agile recognize a basic need in enterprises
for a level of rigor that core agile methods dismiss as not
required, such as governance, architectural planning, and model-
ing. Most mainstream agile methods admit that their strategies
require significant additions and adjustments to scale beyond
teams of about eight people who are working together in close
proximity. Furthermore, most Fortune 1000 enterprises and
government agencies have larger solution delivery teams that are
often geographically distributed, so the required tailoring efforts
can prove both expensive and risky. It is time for a new genera-
tion of agile process framework.

3IBM Software

Here are the big ideas in this paper:
● People are the primary determinant of success for

IT delivery projects.
● Moving to a Disciplined Agile Delivery process is the first step

in scaling agile strategies.
● Disciplined Agile Delivery (DAD) is an enterprise-aware

hybrid software process framework.
● Agile strategies should be applied throughout the entire

delivery life cycle.
● Agile teams are easier to govern than traditional teams.

Context counts—The agile scaling model
To understand the need for the Disciplined Agile Delivery
(DAD) process framework you must start by recognizing the
realities of the situation you face. The Agile Scaling Model
(ASM) is a contextual framework that defines a roadmap to
effectively adopt and tailor agile strategies to meet the unique
challenges faced by an agile software development team. The
first step to scaling agile strategies is to adopt a Disciplined Agile
Delivery life cycle that scales mainstream agile construction
strategies to address the full delivery process from project initia-
tion to deployment into production. The second step is to rec-
ognize which scaling factors, if any, are applicable to a project
team and then tailor your adopted strategies to address the range
of complexities the team faces.

The ASM, depicted in Figure 1, defines three process categories:

1. Core agile development: Core agile methods—such
as Scrum, XP, and Agile Modeling (AM)—focus on
construction-oriented activities. They are characterized by
value-driven life cycles where high-quality, potentially ship-
pable software is produced on a regular basis by a highly
collaborative, self-organizing team. The focus is on small
(<15 member) teams which are co-located and are developing
straightforward software.

2. Disciplined Agile Delivery:1 These methods—including the
DAD process framework (described in this paper) and
Harmony/ESW—address the full delivery life cycle from
project initiation to production. Where appropriate, they add
lean governance techniques to balance self organization and
add a risk-driven viewpoint to the value-driven approach to
increase the chance of project success. Like core agile meth-
ods, these methods focus on small co-located teams develop-
ing straightforward solutions.

3. Agility@Scale: This is Disciplined Agile Delivery, where one
or more scaling factors apply. The scaling factors that an
agile team may face include team size, physical distribution,
organizational distribution, regulatory compliance, cultural or
organizational complexity, technical complexity, and enterprise
disciplines (such as enterprise architecture, strategic reuse, and
portfolio management).

4 Disciplined Agile Delivery: An introduction

Agility@Scale

Disciplined
Agile Delivery

Core Agile
Development

* Disciplined agile delivery when one or more scaling factors apply:
 - Large team size
 - Geographic distribution
 - Regulatory compliance
 - Domain complexity
 - Organization distribution
 - Technical complexity
 - Organizational complexity
 - Enterprise discipline

* Risk + value-driven life cycle
* Self-organizing within appropriate governance framework
* Full delivery life cycle

* Value-driven life cycle
* Self-organizing teams
* Focus on construction

Figure 1: The Agile Scaling Model (ASM)

This paper describes the DAD process framework. In most cases
we assume that your team is small (<15 people), either co-
located or near-located (in the same building), and working
on a relatively straightforward solution.

What is the Disciplined Agile Delivery
(DAD) process framework?
Let’s begin with a definition:

“The Disciplined Agile Delivery (DAD) process framework
is a people-first, learning-oriented hybrid agile approach to
IT solution delivery. It has a risk-value life cycle, is goal-driven,
and is enterprise aware.”

5IBM Software

From this definition, you can see that the DAD process
framework has several important characteristics. These
characteristics are:

● People first
● Learning-oriented
● Agile
● Hybrid
● IT solution focused
● Goal-driven delivery life cycle
● Risk and value driven
● Enterprise aware.

To gain a better understanding of DAD, let’s explore each of
these characteristics in greater detail.

People first
Alistair Cockburn refers to people as “nonlinear, first-order
components” in the software development process. His observa-
tion, based on years of ethnographic work, is that people and the
way that they collaborate are the primary determinants of suc-
cess on IT efforts. This philosophy, reflected in the first value
statement of the Agile Manifesto, permeates DAD. DAD team
members should be self-disciplined and DAD teams should be
self organizing and self aware. The DAD process framework
provides guidance which DAD teams leverage to improve their
effectiveness, but it does not prescribe mandatory procedures.

The traditional approach of having formal handoffs of work
products (primarily documents) between different disciplines—
such as requirements, analysis, design, test, and development—
creates bottlenecks and is a huge waste of time and money.
Handoffs between people often create misunderstandings and
injection of defects and are described in lean software develop-
ment as one of the seven sources of waste. When we create a
document we will not document our complete understanding of
what we are describing and inevitably some knowledge is “left
behind” as tacit knowledge that is not passed on. It is easy to see
how, after many handoffs, the eventual deliverable may bear little
resemblance to the original intent. In an agile environment,
the boundaries between disciplines should be torn down and
handoffs minimized in the interest of working as a team rather
than a group of specialized individuals.

In DAD we foster the strategy of cross-functional teams made
up of cross-functional people. There should be no hierarchy
within the team, and team members are encouraged to be cross-
functional in their skill set and indeed perform work related to
disciplines other than their specialty. The increased understand-
ing gained beyond a team member’s primary discipline results in
more effective use of resources and the reduced reliance on for-
mal documentation and sign-offs.

6 Disciplined Agile Delivery: An introduction

As such, agile methods deemphasize roles based strictly on
skillsets in favor of primary roles that can include a variety
of skills. Accordingly, the five primary roles of DAD are:

1. Stakeholder: A stakeholder is someone who is materially
impacted by the outcome of the solution. The stakeholder is
clearly more than an end user: A stakeholder could be a direct
user, indirect user, manager of users, senior manager, opera-
tions staff member, the “gold owner” who funds the project,
support (help desk) staff member, auditor, your program/
portfolio manager, developers working on other systems that
integrate or interact with the one under development, or
maintenance professionals potentially affected by the
development and/or deployment of a software project.

2. Product owner: The product owner is the individual on the
team who speaks as the “one voice of the customer.” They
represent the needs and desires of the stakeholder community
to the agile delivery team. As such, he or she clarifies any
details regarding the solution and is also responsible for
maintaining a prioritized list of work items that the team will
implement to deliver the solution. While the product owner
may not be able to answer all questions, it is their responsibil-
ity to track down the answer in a timely manner so that the
team can stay focused on their tasks. Having a product owner
working closely with the team to answer any question about
work items as they are being implemented substantially
reduces the need for documentation. Each DAD team, or
sub-team in the case of large programs organized into a team
of teams, has a single product owner. A secondary goal for a
product owner is to represent the work of the agile team to
the stakeholder community. This includes arranging demon-
strations of the solution as it evolves and communicating
project status to key stakeholders.

3. Team member: The team member focuses on producing the
actual solution for stakeholders. Team members will perform
testing, analysis, architecture, design, programming, planning,
estimation, and many more activities as appropriate through-
out the project. Note that not every team member will have
every single one of these skills, at least not yet, but they will
have a subset of them and they will strive to gain more skills
over time. Team members are sometimes described by core
agile methods as “developers” or simply as programmers.
However, in DAD we recognize that not every team member
necessarily writes code.

4. Team lead: The team lead is the agile coach, helping to keep
the team focused on delivering work items and fulfilling their
iteration goals and commitments that they have made to the
product owner. He or she acts as a true leader, facilitating
communication, empowering them to self-optimize their
processes, ensuring that the team has the resources that it
needs, and removing any impediments to the team (issue
resolution) in a timely manner.

5. Architecture owner: The architecture owner makes the
architecture decisions for the team and facilitates the creation
and evolution of the overall solution design. Architecture is a
key source of project risk and someone needs to be responsi-
ble for ensuring the team mitigates this risk. Note that the
architecture owner doesn’t dictate the architecture of the solu-
tion, but instead leads its formulation. On small projects the
team lead is often the architecture owner.

Notice that tester and business analyst are not primary roles in
the DAD process framework. Rather, a generic team member
should be capable of doing multiple things. A team member who
specializes in testing might be expected to volunteer to help with
requirements, or even taking a turn at being the Scrum Master

7IBM Software

(team lead). This doesn’t imply that everyone needs to be an
expert at everything, but it does imply that as a whole the team
should cover the skills required of them, and should be willing to
pick up any missing skills as needed.

Team members should be “generalizing specialists”—a specialist
in one or more disciplines but with general knowledge of other
disciplines as well. More important, generalizing specialists are
willing to collaborate closely with others, to share their skills and
experiences with others and to pick new skills up from the peo-
ple they work with. A team made up of generalizing specialists
requires few handoffs between people, enjoys improved collabo-
ration because the individuals have a greater appreciation of the
background skills and priorities of the various IT disciplines, and
can focus on what needs to be done as opposed to focusing on
whatever their specialties are.

DAD teams and team members should be:
● Self-disciplined, in that they commit only to the work which

they can accomplish and then perform that work as effectively
as possible.

● Self-organizing, in that they will estimate and plan their own
work and then proceed to collaborate iteratively to do so.

● Self-aware, in that they strive to identify what works well for
them, what doesn’t, and then learn and adjust accordingly.

Although people are the primary determinant of success for
IT projects, in most situations it isn’t effective to simply put
together a good team of people and let them loose on the prob-
lem at hand. If you do this the teams run several risks, including
investing significant time in developing their own processes and
practices, in identifying the wrong processes and practices, in not
identifying the right processes and practices, and in tailoring
those processes and practices ineffectively. In other words, peo-
ple are not the only determinant of success. The DAD process
framework provides coherent, proven advice that agile teams
can leverage and thereby avoid or at least minimize the risks
described above.

Learning-oriented
In the years since the Agile Manifesto, we’ve discovered that the
most effective organizations are the ones that promote a learning
environment for their staff. There are three key aspects which
a learning environment must address. The first is domain
learning—how are you exploring and identifying what your
stakeholders need, and perhaps more importantly how are you
helping them to do so? The second is learning to improve your
process at the individual, team, and enterprise levels. The third is
technical learning, which focuses on understanding how to effec-
tively work with the tools and technologies being used to craft
the solution for your stakeholders.

The DAD process framework suggests several strategies to sup-
port domain learning, including initial requirements envisioning,
incremental delivery of a potentially consumable solution, and
active stakeholder participation through the life cycle. To sup-
port process-focused learning, DAD promotes the adoption
of retrospectives where the team explicitly identifies potential
process improvements, a common agile strategy, as well as con-
tinued tracking of those improvements. Within IBM Software
Group we’ve found that agile teams that held retrospectives
improved their productivity more than teams that did not,
and teams that tracked their implementation of the identified
improvement strategies were even more successful. Technical
learning often comes naturally to IT professionals, many of
whom are eager to work with and explore new tools, techniques,
and technologies. This can be a double-edged sword—although
they’re learning new technical concepts they may not invest
sufficient time to master a strategy before moving on to the next
one, or may abandon a perfectly fine technology simply because
they want to do something new.

There are many general strategies for improving your learning
capability. Improved collaboration between people correspond-
ingly increases the opportunities for people to learn from one

8 Disciplined Agile Delivery: An introduction

another, and high collaboration is a hallmark of agility. Investing
in training, coaching, and mentoring are productive learning
strategies as well. Less intuitive, though, is the value in moving
away from specialization within your staff and instead fostering
more robust skills—valuing, that is, the generalizing specialist.
Progressive organizations aggressively promote learning oppor-
tunities for their people outside their specific areas of specialty
as well as opportunities to actually apply these new skills.

If you’re experienced with, or at least have read about, agile
software development, then the previous strategies should sound
very familiar. Where the DAD process framework takes learning
further is through enterprise awareness. Core agile methods such
as Scrum and XP are typically project focused, whereas DAD
explicitly strives to both leverage and enhance the organizational
ecosystem in which a team operates. So DAD teams should
leverage existing lessons learned from other agile teams and
also take the time to share their own experiences. The implica-
tion is that your IT department needs to invest in a technology
for socializing the learning experience across teams. In 2005,
IBM Software Group implemented internal discussion forums,
wikis, and a center of competency (some organizations call them
centers of excellence) to support their agile learning efforts.
A few years later they adopted a Web 2.0 strategy based on
IBM® Lotus® Connections to support enterprise learning.

Agile
The DAD process framework adheres to and enhances the
values and principles of the Agile Manifesto. Teams following
either iterative or agile processes have been shown to produce
higher quality, provide greater return on investment (ROI),
provide greater stakeholder satisfaction, and deliver quicker as
compared to either a traditional/waterfall approach or an ad-hoc

(no defined process) approach. High quality is achieved through
techniques such as continuous integration (CI), developer
regression testing, test-first development, and refactoring.
Improved ROI comes from a greater focus on high-value
activities, through working in priority order, through automation
of as much of the IT drudgery as possible, through self organiza-
tion, through close collaboration, and in general from working
smarter, not harder. Greater stakeholder satisfaction is achieved
by enabling active stakeholder participation, by incrementally
delivering a potentially consumable solution with each iteration,
and by enabling stakeholders to evolve their requirements
throughout the project.

A hybrid process framework
DAD is the formulation of many strategies and practices from
both mainstream agile methods as well as other sources. The
DAD process framework extends the Scrum construction life
cycle to address the full delivery life cycle while adopting
strategies from several agile and lean methods. Many of the
practices suggested by DAD are commonly discussed in
the agile community—such as continuous integration (CI),
daily coordination meetings, and refactoring—and some are
“advanced” practices commonly applied but, for some reason,
not commonly discussed. These advanced practices include
initial requirements envisioning, initial architecture envisioning,
and end-of-life cycle testing, to name a few.

The DAD process framework is a hybrid: i.e., it adopts and
tailors strategies from a variety of sources. A common pattern
we’ve frequently seen within organizations is that they adopt the
Scrum process framework, and then do significant work to tailor
ideas from other sources to flesh it out. This sounds like a great
strategy, and it certainly is if you’re a consultant specializing in
agile adoption, until you notice that organizations tend to tailor

9IBM Software

Scrum in the same sort of way. So, why not start with a more
robust process framework which has done this common work in
the first place? The DAD process framework adopts strategies
from the following methods:

1. Scrum: The focus of Scrum is on project leadership and some
aspects of requirements management. DAD adopts and tailors
many ideas from Scrum, such as working from a stack of work
items in priority order, having a product owner responsible
for representing stakeholders, and producing a potentially
consumable solution from each iteration. However, DAD
abandoned most of Scrum’s terminology—nobody sprints
through a race, people get hurt in rugby scrums, and don’t
get us going on the term “master”—with the exception of the
term product owner.

2. Extreme programming (XP): XP is an important source of
development practices for DAD, including but not limited
to continuous integration (CI), refactoring, test-driven devel-
opment (TDD), collective ownership, and many more.

3. Agile Modeling (AM): As the name implies, AM is the
source for DAD’s modeling and documentation practices.
This includes requirements envisioning, architecture
envisioning, iteration modeling, continuous documentation,
and just-in-time (JIT) model storming.

4. Unified Process (UP): DAD adopts many of its governance
strategies from agile instantiations of the UP, including
OpenUP and Agile Unified Process (AUP). In particular, this
includes strategies such as having light-weight milestones and
explicit phases. We also draw from the Unified Process’ focus
on the importance of proving out the architecture in the early
iterations and reducing all types of risk early in the life cycle.

5. Agile Data (AD): As the name implies AD is a source of agile
database practices, such as database refactoring, database test-
ing, and agile data modeling. It is also an important source of
agile enterprise strategies, such as how agile teams can work
effectively with enterprise architects and enterprise data
administrators.

6. Kanban: DAD adopts two critical concepts—limiting work in
progress and visualizing work—from Kanban, which is a lean
framework. These concepts are in addition to the seven prin-
ciples of lean software development (eliminate waste, build in
quality, create knowledge, defer commitment, deliver quickly,
respect people, and optimize the whole).

Solutions over software
The DAD approach will advance your focus from producing
software to providing solutions—which is where real business
value lies for your stakeholders. A fundamental observation is
that as IT professionals we do far more than just develop soft-
ware. Yes, software is clearly important, but in addressing the
needs of our stakeholders we will often provide new or upgraded
hardware, change the business/operational processes that stake-
holders follow, and even help change the organizational structure
in which our stakeholders work.

This shift in focus requires your organization to address some
of the prejudices that crept into the Agile Manifesto. We fully
endorse the manifesto, but its original signatories were primarily
software developers, software development consultants, or both.
It is little wonder that the language of their manifesto shows a
bias towards software development, which is one of many areas
of expertise involved in the complete software delivery life cycle.
The DAD process frameworks promotes activities that explicitly
address user experience (UX), database, business process, and
documentation issues (to name a few) to help project teams think
beyond software development alone.

10 Disciplined Agile Delivery: An introduction

Goal-driven delivery life cycle
DAD addresses the project life cycle from the point of initiating
the project through construction to the point of releasing the
solution into production. We explicitly observe that each itera-
tion is NOT the same. Projects do evolve and the work empha-
sis changes as we move through the life cycle. To make this clear,
we carve the project into phases with light-weight milestones to
ensure that we are focused on the right things at the right time,
such as initial visioning, architectural modeling, risk manage-
ment, and deployment planning. This differs from mainstream
agile methods, which typically focus on the construction aspects
of the life cycle; details about how to perform initiation and
release activities, or even how they fit into the overall life
cycle, are typically vague and left up to you.

Time and again, whenever either of us worked with a team
which had adopted Scrum we found that they had tailored the
Scrum life cycle into something similar to Figure 2, which shows
the life cycle of a DAD project.2 This life cycle has several
critical features:

1. It’s a delivery life cycle: The DAD life cycle extends the
Scrum construction life cycle to explicitly show the full deliv-
ery life cycle from the beginning of a project to the release of
the solution into production (or the marketplace).

2. There are explicit phases: The DAD life cycle is organized
into three distinct, named phases, reflecting the agile
coordinate-collaborate-conclude (3C) rhythm.

Figure 2: The Disciplined Agile Delivery (DAD) life cycle

Daily
Work Daily Coordination

Meeting

Initial
Architectural
Vision

Initial vision
and funding

Highest-Priority
Work Items

Iteration
Backlog

Work
Items

Working
System

Enhancement Requests
and Defect Reports

Release
solution into
production

Working
Solution

Operate and
support solution

in production

Iteration

Iteration planning session to
select work items and identify
work tasks for current iteration

Iteration review &
retrospective: Demo
system to stakeholders
and gain funding
for next iteration, and
learn from your
experiences

Tasks

Funding

One or more short iterations

Stakeholder consensus

Proven architecture

Many short iterations producing a potentially consumable solution each iteration

Feedback

Sufficient functionality

One or more
short iterations

Production ready
Project viability

(several)

Inception Construction Transition

Identify, prioritize,
and select

projects
Initial

modeling,
planning, and
organization

Initial
Requirements

and Release
Plan

11IBM Software

Goals for the Inception Phase

- Identify the vision for the project
- Bring stakeholders to agreement
 around the vision
- Identify initial technical strategy,

initial requirements, and project plan
- Form initial team
- Secure funding
- Identify risks

Goals for Construction Phase Iterations

- Produce a potentially consumable solution
- Address changing stakeholder needs
- Move closer to deployable release
- Maintain or improve upon existing levels of quality
- Address highest risk(s)

Goals for the Transition Phase

- Ensure the solution is production ready
- Ensure the stakeholders are prepared
 to receive the solution
- Deploy the solution into production

Ongoing Goals

- Fulfill the project mission
- Grow team members skills
- Enhance existing infrastructure

- Improve team process and environment
- Leverage existing infrastructure

Table 1: Goals addressed throughout a DAD project

3. The delivery life cycle is shown in context: The DAD life
cycle recognizes that activities to identify and select projects
occur long before, sometimes even years before, their official
start. It also recognizes that the solution produced by a DAD
project team must be operated and supported once it is deliv-
ered into production, and that important feedback comes
from people using previously released versions of the solution.

4. There are explicit milestones: The milestones are an
important governance and risk reduction strategy inherent
in DAD.

One of the challenges in describing a process framework is that
you need to provide sufficient guidance to help people under-
stand it, but if you provide too much guidance you become
overly prescriptive. As we’ve helped various organizations
improve their software processes over the years, we’ve come to
believe that the various process proponents are coming from
one extreme or the other. Either there are very detailed
processes descriptions—the IBM Rational® Unified Process

(RUP) is one such example—or there are very light-weight
process descriptions, Scrum being a perfect example. The
challenge with RUP is that many teams didn’t have the skill to
tailor it down appropriately, often resulting in extra work being
performed. On the other hand many Scrum teams had the oppo-
site problem with not knowing how to tailor it up appropriately,
resulting in significant effort spent reinventing or relearning
techniques to address the myriad issues that Scrum doesn’t cover.
Either way, a lot of waste could have been avoided if only there
was an option between these two extremes.

To address this challenge the DAD process framework is goals-
driven, as summarized in Table 1. There are of course many
ways which these goals can be addressed, so simply indicating
the goals is of little value. Our experience is that this goals-
driven, suggestive approach provides just enough guidance
for solution delivery teams while being sufficiently flexible so
that teams can tailor the process to address the context of the
situation that they find themselves in.

12 Disciplined Agile Delivery: An introduction

•
•
•
•
•
•
•

•
•

•

•

Project
Selected

Stakeholder
Consensus

Up to a few hours

Coordinate

Ideally: Up to a few weeks
Average: 4 weeks

Worst case: Several months

Collaborate

Up to a few hours

Conclude

Requirements envisioning
Architecture envisioning
Consider feasibility
Build team
Release planning (initial)
Develop shared vision
Setup environment

Initiate team
Schedule stakeholders
for envisioning sessions

Lightweight
milestone review
Communicate
vision to
stakeholders

Figure 3: Inception phase overview

Table 1 doesn’t provide a full listing of the goals your team will
address. There are several personal goals of individuals, such as
specific learning goals, the desire for interesting work, for com-
pensation, and for public recognition of their work. There are
also specific stakeholder goals that will be unique to your project.

Let’s overview the DAD phases to better understand the
contents of the DAD process framework.3

The inception phase
Before jumping into building or buying a solution, it is worth
spending some time identifying the objectives for the project.
Traditional methods invest a large amount of effort and time
planning their projects up front. Agile approaches suggest that
too much detail up front is not worthwhile since little is known

about what is truly required as well as achievable within the time
and budget constraints. Mainstream agile methods suggest that
very little effort be invested in upfront planning. Their mantra
can be loosely interpreted as “let’s just get started and we will
determine where we are going as we go”. To be fair, some agile
methods have a short planning iteration, called “Sprint 0” in
Scrum, and the “Planning Game” in Extreme Programming
(XP) that on average takes 3.9 weeks.4 In DAD, we recognize
the need to point the ship in the right direction before going
full-speed ahead—typically between a few days and a few
weeks—to initiate the project. Figure 3 overviews the potential
activities that may occur during Inception. This phase ends
when the team has developed a vision for the release that the
stakeholders agree to and has obtained support for the rest of
the project (or at least the next stage of it).

13IBM Software

•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•

•

•
•
•
•
•
•
•
•

Iteration
start

Potentially
consumable
solution

Two hours for each week
of the iteration length

Typical: Two to four weeks
Average: Two weeks

Worst case: Six weeks One hour per week
of iteration length

edulcnoCetaroballoCetanidrooC

Visualize work
Daily coordination meeting
Refactoring
Developer regression testing
Model storming
Continuous integration (CI)
Sustainable pace
Prioritized requirements
Architecture spike
Configuration management
Burn-down chart
Automated metrics

Iteration planning
Iteration modeling

Iteration demo
Retrospective
Release planning
(update)
Consider sufficient
functionality

Test-driven development (TDD)
Acceptance TDD (ATDD)
Continuous deployment (CD)
Look-ahead modeling
Parallel independent testing
Continuous documentation
Non-solo development
Look-ahead planning

“Standard” practices: “Advanced” practices:

Figure 4: Construction iteration overview

The construction phase
The construction phase in DAD is the period of time during
which the required functionality is built. The timeline is split up
into a number of time-boxed iterations. These iterations, the
potential activities of which are overviewed in Figure 4, should
be the same duration for a given project—typically one week to

four weeks, with two and four weeks being the most common—
and typically do not overlap. At the end of each iteration a
demonstrable increment of a potentially consumable solution has
been produced and regression tested. The construction phase
ends where there is sufficient functionality to justify the cost
of transition, sometimes referred to as minimally marketable
release (MMR), and which the stakeholders believe is acceptable
to them.

14 Disciplined Agile Delivery: An introduction

•
•
•
•
•
•

•

•

•

Sufficient
Functionality

Production
Ready

Ideally: Nothing
Typical: One hour per week

of collaborate time

Ideally: Nothing
Average: 4 weeks

Worst case: Several months

Ideally: Less than
an hour

Worst case:
Several months

edulcnoCetaroballoCetanidrooC

Transition planning
End-of-lifecycle testing and fixing
Pilot/beta the solution
Finalize documentation
Communicate deployment
Train/educate stakeholders

Phase planning Production
readiness review
Deploy solution

Transition phase overview

The transition phase
The transition phase focuses on delivering the system into
production (or into the marketplace in the case of a consumer
product). As you can see in Figure 5 there is more to transition
than merely copying some files onto a server. The time and
effort spent transitioning varies from project to project. Shrink-
wrapped software entails the manufacturing and distribution

of software and documentation. Internal systems are generally
simpler to deploy than external systems. High visibility systems
may require extensive beta testing by small groups before release
to the larger population. The release of a brand new system may
entail hardware purchase and setup, while updating an existing
system may entail data conversions and extensive coordination
with the user community. Every project is different. The transi-
tion phase ends when the stakeholders are ready and the system
is fully deployed.

15IBM Software

Enterprise aware
DAD teams work within your organization’s enterprise ecosys-
tem, as do other teams, and explicitly try to take advantage of
the opportunities presented to them—to borrow an environ-
mental cliché, disciplined agilists act locally and think globally.
This includes working closely with the following teams and
individuals: enterprise technical architects, and reuse engineers
to leverage and enhance5 the existing and “to be” technical
infrastructure; enterprise business architects and portfolio man-
agers to fit into the overall business ecosystem; senior managers
who should be governing the various teams appropriately; data
administrators to access and improve existing data sources;
and IT development support people to understand and follow
enterprise IT guidance (such as coding, user interface, security,
and data conventions to name a few). In other words, DAD
teams should adopt what Mark refers to as a “whole enterprise”
mindset.

With the exception of start-up companies, agile delivery teams
don’t work in a vacuum. There are often existing systems cur-
rently in production, and minimally your solution shouldn’t
impact them although your solution should leverage existing
functionality and data available in production. There are often
other teams working in parallel to your team, and you may wish
to take advantage of a portion of what they’re doing and vice
versa. There may be a common vision which your organization
is working towards, a vision which your team should contribute
to. There will be a governance strategy in place, although it may
not be obvious to you, which hopefully enhances what your team
is doing.

Enterprise awareness is an important aspect of self discipline
because as a professional you should strive to do what’s right
for your organization and not just what’s interesting for you.

Unfortunately this isn’t always the case. Some IT “professionals”
will choose to work with new technologies, and even implement
them in the solutions that they produce, not because those tech-
nologies are what’s most appropriate for the projects at hand but
because they help to improve their resume. Or they’ll choose to
build something from scratch, or use new development tools, or
create new data sources, when perfectly good ones already exist
within the organization. We can and should do better, and we
can do so by:

1. Leveraging enterprise assets: There are many enterprise
assets, or at least there should be, which you can use and
evolve. This includes common development guidelines, such
as coding standards, data conventions, security guidelines,
and user interface standards. But enterprise assets are far
more than standards. If your organization uses a disciplined
architecture-centric approach to building enterprise software,
there will be a growing library of service-based components to
reuse and improve upon for the benefit of all current and
future solutions. DAD teams strive to work to a common
infrastructure, for example using the enterprise-approved
technologies and data sources whenever possible, and better
yet they work to the “to be” vision for your infrastructure.
To do this DAD teams will collaborate with enterprise
professionals—including enterprise architects, enterprise busi-
ness modelers, data administrators, operations staff, and reuse
engineers—throughout the life cycle and particularly during
Inception during envisioning efforts. Leveraging enterprise
assets increases consistency and thereby ease of maintenance,
decreases development costs and time, and decreases
operational costs.

16 Disciplined Agile Delivery: An introduction

2. Enhance your organizational ecosystem: The solution
being delivered by a DAD team should minimally fit into the
existing organizational ecosystem6—the business processes and
systems supporting them. Better yet, it should enhance that
ecosystem. To do this, the first step is to leverage existing
enterprise assets wherever possible as described earlier. DAD
teams will work with operations and support staff closely
throughout the life cycle, particularly the closer you get to
releasing into production, to ensure that they understand the
current state and direction of the organizational ecosystem.
DAD teams will often be supported by an independent test
team that will do production integration testing (among other
things) to ensure that your solution works within the
target production environment which it will face at
deployment time.

3. Open and honest monitoring: Although agile approaches
are based on trust, smart governance strategies are based on
a “trust but verify and then guide” mindset. An important
aspect of appropriate governance is the monitoring of project
teams through various means. One strategy is for anyone
interested in the current status of a DAD project team to
attend the daily coordination meeting and listen in; this is a
strategy promoted by the Scrum community. Although we
highly recommend this, it unfortunately doesn’t scale very
well because the senior managers responsible for governance
are often busy people with many efforts to govern, not just
your team. In fact Scott found exactly this in the 2010 “How
Agile Are You?” survey. Another approach, one we’ve seen to
be incredibly effective, is for DAD teams to use instrumented
and integrated tooling, particularly Jazz™-enabled products
such as IBM Rational Team Concert™ software, which gener-
ates metrics in real time that can be displayed on project dash-
boards. You can see an example of such a dashboard for the
Jazz team itself at jazz.net, a team following an open commer-
cial strategy.

A third strategy is to follow a risk-driven life cycle, discussed in
the next section, with explicit milestones which provide
consistent and coherent feedback as to the project status to
interested parties.

Risk and value-driven
The DAD process framework adopts what is called a risk-value
life cycle; effectively, this is a light-weight version of the strategy
promoted by the Unified Process (UP). DAD teams strive to
address common project risks, such as coming to stakeholder
consensus around the vision and proving the architecture, early
in the life cycle. DAD also includes explicit checks for continued
project viability, whether sufficient functionality has been
produced, and whether the solution is production ready. It is
also value-driven, a strategy which reduces delivery risk, in
that DAD teams produce potentially consumable solutions on a
regular basis.

It has been said, “Attack the risks before they attack you.” This
is a philosophy that is consistent with the DAD approach. The
DAD risk-value driven life cycle is an extension of the value-
driven life cycle common to methods such as Scrum and XP.
With a value driven life cycle you produce potentially shippable
software with each iteration, or more accurately (from a DAD
perspective) a potentially consumable solution with each itera-
tion. The features delivered represent those in the requirements
backlog that are of highest value from the perspective of the
stakeholders. With a risk-value driven life cycle you also consider
features related to risk as high priority items, not just high-value
features. With this in mind we explicitly address risks which are

17IBM Software

common to IT delivery projects as soon as we possibly can.
To be fair, value-driven life cycles address three important risks:
1) the risk of not delivering at all, 2) the risk of delivering the
wrong functionality, and 3) political risks resulting from lack of
visibility into what the team is producing. Addressing these risks
is a great start, but it’s not the full risk mitigation picture.

First and foremost, DAD includes and extends standard
strategies of agile development methods to reduce common
IT delivery risks:

1. Potentially consumable solutions: DAD teams produce
potentially consumable solutions with every construction
iteration, extending Scrum’s strategy of potentially shippable
software to address usability concerns (the consumability
aspect) and the wider issue of producing solutions and not
just software. This reduces delivery risk because the stakehold-
ers are given the option to have the solution delivered into
production when it makes sense to do so.

2. Iteration demos: At the end of each construction iteration
the team should demo what they have built to their key
stakeholders. The primary goal is to obtain feedback from
the stakeholders and thereby improve the solution they’re
producing, decreasing functionality risk. A secondary goal is to
indicate the health of the project by showing their completed
work, thereby decreasing political risk (assuming the team is
working successfully).

3. Active stakeholder participation: The basic idea is that not
only should stakeholders, or their representatives (i.e. product
owners), provide information and make decisions in a timely
manner but they can also be actively involved in the develop-
ment effort itself. For example, stakeholders can often be
actively involved in modeling when inclusive tools such as
paper and whiteboards are used. Active stakeholder involve-
ment through the entire iteration, and not just at demos,
helps to reduce both delivery and functionality risk due to
the greater opportunities to provide feedback to the team.

The mainstream agile strategies to addressing risk on IT delivery
projects are a good start, but only a start. DAD also adopts
explicit, light-weight milestones to further reduce risk. At each
of these milestones an explicit assessment as to the viability of
the project is made by key stakeholders and a decision as to
whether the project should proceed is made. These milestones,
indicated on the DAD life cycle depicted in Figure 2, are:

1. Stakeholder consensus: Held at the end of the Inception
phase, the goal of this milestone is to ensure that the project
stakeholders have come to a reasonable consensus as to the
vision of the release. By coming to this agreement we reduce
both functionality and delivery risk substantially even though
very little investment has been made to date in the develop-
ment of a working solution. You should expect to cancel ten
to fifteen percent of your projects at this milestone.

18 Disciplined Agile Delivery: An introduction

2. Proven architecture: In the early construction phase itera-
tions we are concerned with reducing most risk and uncer-
tainty related to the project. Risk can be related to many
things such as requirements uncertainty, team productivity,
business risk, and schedule risk. However, at this point in
time much of the risk on an IT delivery project is typically
related to technology, specifically at the architecture level.
Although the high-level architecture models created during
the Inception phase are helpful for thinking through the
architecture, the only way to be truly sure that the architec-
ture can support the requirements is by proving it with
working code. This is a vertical slice through the software and
hardware tiers that touches all points of the architecture from
end to end. In the UP this is referred to as “architectural
coverage” and in XP as a “steel thread” or “tracer bullet.” By
writing software to prove out the architecture, DAD teams
greatly reduce a large source of technical risk and uncertainty
by discovering and then addressing any deficiencies in their
architecture early in the project.

3. Continued viability: In Scrum the idea is that at the end of
each sprint (iteration) your stakeholders consider the viability
of your project. In theory this is a great idea, but in practice it
rarely seems to happen. The cause of this problem is varied—
perhaps the stakeholders being asked to make this decision
have too much political stake in the project to back out of
it unless things get really bad and perhaps psychologically
people don’t notice that a project gets into trouble in the small
periods of time typical of agile iterations. The implication is

that you need to have purposeful milestone reviews where the
viability of the project is explicitly considered. We suggest that
you do so once a quarter, implying that this milestone may
occur several times during the construction phase of a longer
release or not at all for a shorter one.

4. Sufficient functionality: The construction phase milestone is
reached when enough functionality has been completed to
justify the expense of transitioning the solution into produc-
tion. The solution must meet the acceptance criteria agreed
to earlier in the project, or be close enough that it is likely
any critical quality issues will be addressed during the
transition phase.

5. Production ready: At the end of the transition phase your
key stakeholders will need to determine if the solution should
be released into production. At this milestone, the business
stakeholders are satisfied with and accept the system, the
people responsible for operating the system once it is in
production are satisfied with the relevant procedures and
documentation, and the people responsible for supporting the
system once it is in production are satisfied with the relevant
procedures and documentation.

Concluding thoughts
The good news is that evidence clearly shows that agile methods
deliver superior results compared to traditional approaches and
that the majority of organizations are either using agile tech-
niques or plan to in the near future. The bad news is that
the mainstream agile methods—including Scrum, Extreme
Programming (XP), and Agile Modeling (AM)—provide only a

19IBM Software

part of the overall picture for IT solution delivery. Disciplined
Agile Delivery (DAD) is a hybrid process framework that pulls
together common practices and strategies from these methods,
and more, to address the full delivery life cycle. DAD puts
people first, recognizing that individuals and the way that they
work together are the primary determinants of success on IT
projects. DAD is enterprise aware, motivating teams to leverage
and enhance their existing organizational ecosystem, to follow
enterprise development guidelines, and to work with enterprise
administration teams. The DAD life cycle includes explicit mile-
stones to reduce project risk and increase external visibility of
key issues to support appropriate governance activities by senior
management.

For more information
For more detailed discussions about several of the topics covered
in this paper, refer to:
● The Agile Manifesto: The 4 values of the Agile Manifesto

are posted at http://www.agilemanifesto.org/ and the twelve
principles behind it at http://www.agilemanifesto.org/

principles.html.

● Agile surveys: Throughout the paper we referenced
several surveys. The Agile Journal Survey is posted at
http://www.agilejournal.com/. The results from the
Dr. Dobb’s Journal (DDJ) and Ambysoft surveys are posted at
http://www.ambysoft.com/surveys/, including the original
source data, questions as they were asked, as well as slide decks
summarizing Scott Ambler’s analysis.

● People first. Alistair Cockburn paper, “Characterizing people
as nonlinear, first-order components in software development”
at http://alistair.cockburn.us/Characterizing+people+as+

non-linear%2c+first-order+components+in+software+

development argues that people are the primary determinant
of success on IT projects. In “Generalizing Specialists:
Improving Your IT Skills” at http://www.agilemodeling.com/

essays/generalizingSpecialists.htm Scott argues for the need
to move away from building teams of overly specialized
people.

● The Agile Scaling Model (ASM): The ASM is described in
detail in the IBM white paper “The Agile Scaling Model
(ASM): Adapting Agile Methods for Complex Environments”
at ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/

raw14204usen/RAW14204USEN.PDF

● Lean: For more information about lean software development,
Mary and Tom Poppendieck’s Implementing Lean Software
Development: From Concept to Cash (Addison Wesley, 2007)
is the best place to start.

● Hybrid processes: In “SDLC 3.0: Beyond a Tacit
Understanding of Agile” (Fourth Medium Press, 2010)
Mark Kennaley summarizes the history of the software process
movement and argues for the need for hybrid processes which
combine the best ideas from the various process movements
over the past few decades.

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from technol-
ogy obsolescence, improved total cost of ownership and return
on investment. Also, our Global Asset Recovery Services help
address environmental concerns with new, more energy-efficient
solutions. For more information on IBM Global Financing, visit:
ibm.com/financing

http://www.agilemanifesto.org/principles.html.
http://www.agilemanifesto.org/principles.html.
http://www.agilejournal.com/.
http://www.ambysoft.com/surveys/
http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear%2c+first-order+components+in+software+development
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
http://www.ibm.com/financing

About the authors
Scott W. Ambler is Chief Methodologist for Agile and Lean
with IBM Rational, working with IBM customers around the
world to help them to improve their software processes. In
addition to Disciplined Agile Delivery (DAD), he is the founder
of the Agile Modeling (AM), Agile Data (AD), Agile Unified
Process (AUP), and Enterprise Unified Process (EUP) method-
ologies and creator of the Agile Scaling Model (ASM). Scott is
the (co-) author of 19 books, including Refactoring Databases,
Agile Modeling, Agile Database Techniques, The Object Primer
3rd Edition, and The Enterprise Unified Process. Scott is a senior
contributing editor with Dr. Dobb’s Journal. His personal home
page is www.ambysoft.com

Mark Lines cofounded UPMentors in 2007. He is a “disci-
plined” agile coach helping organizations improve on all aspects
of software development. He is passionate about reducing the
huge waste found in many IT organizations, and demonstrates
hands-on approaches to speeding execution and improving qual-
ity with agile and lean techniques. Mark is a frequent speaker
and writes for many software publications. His company
website is www.UPMentors.com. Mark can be reached at
Mark@UPMentors.com

© Copyright IBM Corporation 2011

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A

Produced in the United States of America
April 2011
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at ibm.com/legal/copytrade.shtml.

References in this publication to IBM products or services do not imply that
IBM intends to make them available in all countries in which IBM operates.

The information contained in this documentation is provided for
informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this
documentation, it is provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current product
plans and strategy, which are subject to change by IBM without notice.
IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, this documentation or any other documentation.
Nothing contained in this documentation is intended to, nor shall have
the effect of, creating any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

1 We apologize for the confusion of using the same term for two different but
related concepts—disciplined agile delivery (all lower case) to refer to the
category and Disciplined Agile Delivery (all upper case) to refer to the
process framework.

2 Granted, in this version we’re using the term iteration instead of sprint, and
work items instead of product backlog.

3 For those of you familiar with UP we’ve adopted its phase names, although
we’ve combined the UP’s Elaboration and Construction phases. We’ve kept
the fundamental focus of Elaboration, which is to explore and then prove the
architecture with working code, in the form of the proven architecture
milestone. Removing Elaboration as a separate phase helps streamline the
DAD life cycle.

4 Results of a 2009 Ambysoft survey.

5 Disciplined agile teams strive to reduce the level of technical debt in your
enterprise by adopting the philosophy of mature campers and hikers
around the world—Leave it better than how you found it.

6 We apologize for the application of “management speak”, but
organizational ecosystem is an accurate term.

RAW14261-USEN-00

Please Recycle

http://www.ambysoft.com
http://www.UPMentors.com.
http://mailto: Mark@UPMentors.com
http://www.ibm.com/legal/copytrade.shtml

	Untitled
	Disciplined Agile Delivery:An introducti
	Context counts—The agile scaling model
	What is the Disciplined Agile Delivery(D
	People ﬁrst
	Learning-oriented
	Agile
	A hybrid process framework
	Solutions over software
	Goal-driven delivery life cycle
	Enterprise aware
	Risk and value-driven
	Concluding thoughts
	For more information
	About the authors

