From Scrum to Kanban - A Team’s Journey

AKI NAMIOKA, Marchex

Due to the changing nature of the work my team was assigned to, we needed to make some changes to our Agile practices. Since other
teams in our company had experience with kanban, we decided to make the transition from scrum to kanban. This report will discuss the
factors that went into our decision, how we made the transition, some lessons learned, and suggested best practices.

1. INTRODUCTION

In 2014, my team was in the middle of a very aggressive and complex transition. We transitioned from
supporting an established product that had been running in production for 7 plus years, to a team that was
developing a brand new product.

As my team tried to respond to these changes, we found that our current scrum paradigm had issues. We
had been successfully using scrum for more than 2 years, but now our scrum practices weren’t working as well.

As the Development Manager on the team, I observed that morale became an issue as we found it harder
and harder to execute successfully on our sprint plans. In general it was a stressful time for the team as we
tried to adapt to the demands of a new product, as well as new technology, and a new organization structure.

In the Summer 2014, we decided that we should make the transition to kanban, to see if it would help
mitigate some of our issues with sprint planning,.

2. MARCHEX AND AGILE

My company, Marchey, is a mobile advertising technology company. Since 2011 my team had supported the
Free411 product, a free directory assistance service that was driven by a speech recognition engine. This
product had already been in production for several years, but Marchex acquired the company in 2011. In 2013
my team had finished migrating the Free411 product into a smooth running, supportable product in a new data
center. At this point, Marchex’s highest priority was to invest the engineering resources of my team into an
area that had more growth potential, i.e. search. Search advertising is a multi-billion dollar business, thanks to
the Google AdWords platform. Because Marchex already had an extensive Call Analytics product that was
processing millions of advertising campaigns per month, it seemed like a natural next step to expand our Call
Analytics product to support Call Analytics for Google and Bing search campaigns. Because this was a brand
new product, it was essentially “green field” application development. To minimize change for the team, we
tried to stay with our basic scrum structure as we transitioned from one product to the next. But as it turns out,
this plan wasn’t as smooth as we had hoped.

Marchex is no stranger to Agile. Our VP of Technology is a strong advocate for the Agile philosophy and the
entire product organization has adopted Agile in some form or another. True to Agile, each team is empowered
to select the methods and practices that work best for them. Therefore, some teams are strictly XP, some teams
are using scrum + XP, and some teams look more scrumban - a combination of scrum and kanban. Many of us
had had kanban training in 2013, so we were already familiar with the concepts.

In 2014, before we transitioned to kanban, my team looked like a combination of XP + scrumban. We had
adopted some standard XP practices, e.g. TDD, daily standups, pair-programming, demos, and regular
retrospectives. We also were using our white board to track our sprint progress, through a kanban-style board,
which helped us visualize the work better.

Since Agile was deeply ingrained into the Marchex culture, we had the support to adopt a new Agile
paradigm, if necessary. And by the summer of 2014, it looked like a change was going to be necessary.

Aki Namioka, 520 Pike Street, Seattle, WA; email: anamioka@marchex.com
Copyright 2015 is held by the author(s).

3. MOTIVATION FOR TRANSITION TO KANBAN

3.1 Unfamiliar Domain and Technology

Our first problem was our story definitions and point accuracy. One of the decisions we made, as we started
our new product development, was the decision to use Scala for application development. Previously, the team
had been using C++, Ruby, and Java as their primary languages. Unlike better-established languages, Scala uses
a functional paradigm that is different than the more familiar object-oriented paradigm. As we started to delve
into our new search domain, and adopt the new Scala technologies we found it more and more difficult to write
stories with sufficient acceptance criteria, and we were getting worse about assigning accurate points. For
example, we had a set of stories around creating a new service. One of the stories was defined as creating an
API for this new service. The acceptance criteria for this story was vague, i.e. create an API that is usable by a
client application to fetch and push data. This story languished in the same status while the team talked to
internal clients that would use the API, and then designed a solution, and then implemented. Looking at our
retrospective notes from the summer of 2014, there were many comments about stories with insufficient
information, and underestimating how long it would take to do X. We didn’t have a “yesterday's weather” type
of comparison we could use to accurately gauge story size, so we often didn’t complete the stories in our sprint
plan.

All of this was creating a morale problem for the team members, as sprint after sprint the stories were not
getting done as planned. Seeing the same stories in the same status day after day, or week after week, gave the
feeling of being bogged down. Up until now, the team did their best to plan what they thought they could
achieve, and felt good when all stories were in the “Done” state at the end of the sprint.

The apparent lack of progress also was causing a problem in how we communicated with our Program
Manager. Week after week he saw the same stories on our board, and they appeared to be stalled. As he was
also new to the technology and domain, he didn’t know what questions to ask to get better clarity on scope and
schedule. The team felt they were on a constant journey of discovery, and each new story was a new area to
learn about. Thus, from the team’s perspective they found it difficult to explain the lack of clarity around their
estimates. This lack of clarity around deliverables was also causing some concern from upper management.

3.2 Fluctuating Backlog

Another problem was our fluctuating backlog. For teams that transition from waterfall to Agile, a 2-week sprint
seems short and immediate. However, we were finding that 2-week sprints were too long in the evolving
business needs of new product development. Our Business Development team was discussing our product to
potential customers, and returning with feedback about our offering. In response, we had to constantly adjust
our backlog priorities. Sometimes it felt like we were changing priorities on a daily basis. During this time we
also went through a major product shift i.e. the product we thought we were planning and executing on, turned
out to not resonate with our clients as much as some of the data analysis we were providing for them. So, we
decided to refine our product offering in response to this feedback. In this environment a 2-week sprint plan
was difficult to maintain.

Even after our product launch in February 2015, the fluid nature of our backlog still hasn’t changed as our
customers continue to ask for additional features. As a result our product roadmap is still in flux. In this
environment sprint planning feels too awkward, and no longer fits our business needs. Between the rigidity of
sprint boundaries, a backlog that is in constant flux, and the constant need to release feature enhancements
and robustness, a new paradigm is required.

3.3 Need for Change

After several retrospective where we noted our inability to finish a sprint plan, I started looking around for
ideas on how to mitigate these issues. Many members of the team had had kanban training the previous year,
and we had taken the initial steps of moving our electronic scrum board onto a large white board in our
standup space. This made the work more visible.

Also, as part of our transition to a new product team, my team went from being a single development team
working mostly on its own, to part of a 3-team development effort. All 3 teams were required to develop and
launch our new product. One of our new sister teams was already using kanban, and they were very happy
with the results. They also had a reputation for being consistently productive.

I spoke to one of the developers who had moved from our team to the kanban team, and asked her how
she felt about the transition from scrum to kanban. She said she liked the kanban style better for two reasons:
the team just focused on the top 1 or 2 stories from the backlog, and when they were done they moved to the

From Scrum to Kanban - A Team's Journey: Page - 2

next story. She said she enjoyed the simplicity of just picking the top story from the backlog and just finishing
the work. She also mentioned that their process was more manageable because their stories were much
smaller in scope. After talking to her, I was convinced that this was the right direction for my team.

From a logistics point of view, we had to be careful in how we transitioned. We were in the middle of new
product development, and customers were being identified. We didn’t have the luxury of slowing down our
productivity.

3.4 Things That Didn’t Need to Change

As we considered our transition away from scrum, there were still some practices that we firmly believed were
still productive for the team. As is widely known, scrum is a method of structuring a project, while XP practices
are mostly how to develop code. Advocates for XP often adopt scrum+XP. Similarly, we decided to continue
using some XP practices, while using kanban for structure instead:

¢ Pairs-Programming - in 2014, the team had recently adopted pairs-programming as the normal way to
develop software. We found that in adopting the new Scala language, and learning about the search
paradigm, that pairs-programming was an imperative to maintain productivity on the team. We
assigned pairs at our standups each day, though often the same pair would work together until a story
was done.

¢ Test-driven Development - almost all, new development was created using test-driven development,
and we felt that this practice was still the best way to develop software.

* Retrospectives - this is a standard Agile practice that should never go away. We find it useful for the
same reasons other Agile teams do - it is our way of doing continuous quality improvement.

¢ Story points - We changed our point definition, but fundamentally we didn’t see the need to change the
idea of using points to estimate story size. We would discuss a story, agree on the acceptance criteria,
and then assign points by group vote.

4. PROCESS OF TRANSITION

My next step was to talk to the Development Manager of the kanban team to understand his team processes
and some best practices. He is also our Jira Administrator, so I also talked to him about what our new kanban
board would look like. Even though his team had a continuous flow of stories, there were three things he still
did on a weekly cadence: (1) planning every Monday afternoon, (2) weekly demos, and (3) weekly
retrospectives. He also mentioned that smaller stories made it easier to measure flow, and keep a consistent
WIP (work in progress) limit. Though this sounds a bit like a 1-week sprint, the important difference is that his
team works off a constantly groomed backlog and reprioritizes as needed throughout the week.

I discussed the concept of moving to kanban with the team, and organized a Lean Coffee (leancoffee.org)
style meeting to solicit feedback and address concerns from the team. The Lean Coffee style meetings explicitly
solicit feedback from everyone by asking participants to submit discussion topics, and then they are prioritized
by group vote. The priority of the topics is organized by the vote count.

The biggest issue that came out of the meeting was story size. It was felt that kanban would work better if
all the stories were smaller and more consistently sized. It would also help mitigate the unknown nature of
working with the new search and Scala technologies. As a result of that meeting we decided on the following
processes to support our new kanban model:

¢ Weekly 1 hour planning meetings on Mondays.

* Weekly 1 hour retrospectives on Fridays.

e If we started getting low on stories mid-week (i.e. before the next Monday planning meeting), we
would do a mini-planning at the daily standup.

* New points “measuring stick”. 1 point = 1/2 ideal workday for 1 pair of programmers. Previously our
scale was 1 point = 1 ideal workday for 1 pair. This reduced scale helped us keep our stories smaller as
a 5 point story meant it was supposed to be done in about 2.5 days, rather than 5 days.

¢ If, during planning, we assigned more than 8 points to a story, we would break it into 2 or more
stories.

* Daily standups would focus on discussing story status and moving them across the kanban board,
rather than going around the circle and giving status. This meant our standups were shorter and more

From Scrum to Kanban - A Team's Journey: Page - 3

focused on the immediate tasks on hand. This change seemed like a natural extension of our move to
kanban, as it underscored kanban's emphasis on making work and cycle-time more visible.

* We assigned pairs during the standups. We didn’t necessarily change the pairs every day, especially if
the pair was in the middle of a story, but we discussed each pairing every day. Given our team size, it
only took a minute or two.

* We kept the concept of 16th minute - i.e. if anybody wanted to discuss an issue in more depth, then we
would write it down on our white board and park it for the 16th Minute discussion. The 16th minute
items were discussed after we were done discussing story status on the board and assigning pairs.

¢ WIP would be 1 for each pair of developers on the team, i.e. 6 developers would mean a WIP of 3 for
“In Dev”. We also assigned a WIP of 3 on the “In QA” column. We never changed this WIP, so it seems
to suit the team well.

We made the transition from scrum to kanban at the sprint boundary, i.e. we finished our current sprint, and at
our next planning meeting we created a new points “measuring stick” and started planning as if we were a
kanban team. This meant that we only needed to scope and plan stories for the coming week, as planning was
on Monday morning,.

Making the change to smaller stories solved one of our existing problems - the underspecified stories. By
discussing stories that had a smaller scope, we also naturally tended to tighten up the acceptance criteria.
Since our stories were 8 points (4 days) or less, we discussed the goals of the stories in smaller granularity. For
example, instead of having a story that was simply creating an API for a new Service, the new stories were
broken down into smaller stories like initialize, publish, validate, logging, finalize. In working on our
acceptance criteria for each of those smaller stories, since the scope was smaller, our acceptance criteria also
become much more modest in scope and granularity. For example, creating acceptance criteria for a story on
logging became very specific. In contrast, the type of acceptance criteria that was created for a story on
creating an API was much more vague.

[t is true that creating smaller stories also meant creating more stories. Creating a good story hierarchy was
critical to make sure that the larger features were being implemented adequately. A story hierarchy is often
used to organize sub-stories under a broader scoped story. The broader story is often called an “epic”. Using
this mechanism we can create some order around a larger number of smaller scoped stories.

We were able to easily plan about 1 week’s worth of work in under an hour. This was less than our previous
3 hour bi-weekly sprint planning meetings. Somebody used to fondly call it “poke your eyes out day”. In all
fairness, however, our old sprint planning meetings also included a retrospective. Now, we had a separate
retrospective each Friday. But breaking the planning and retrospective into two meetings felt more palatable
than 1 long bi-weekly meeting.

We started our new kanban life using the same white board we were using for scrum, with no adjustment
to our column names. The column names were:

| In Dev | Ready for QA | In QA | Ready for Release | Done |

Then a couple of weeks later, when we acquired a large screen, we moved to using the electronic Jira board
during our standups and planning. This made it easier for the team to see the backlog. At this point, we added
in the use of 4 additional columns. This was a practice we got from the other kanban team. The 4 additional
columns we added to the Left of our existing 5 columns were:

| New | Bucket | Backlog | On Deck |

New = New stories

Bucket = Unordered backlog

Backlog = Prioritized backlog

Start = Stories that the team feels were ready to implement, i.e. good acceptance criteria and points
assigned.

The transition was very smooth, and after 9 months the team is still happy with the kanban paradigm. The

planning is more “just in time” (JIT). The stories are shorter and more manageable. Using the rule of having to
break down any story that is bigger than 8 points forces us to keep the stories small in scope. For a while, we

From Scrum to Kanban - A Team's Journey: Page - 4

had a picture of our new “measuring stick” posted on our Jira board monitor, and we often referred to it during
the first few weeks of our transition. After the first few weeks, the picture continued to hang on our Jira board,
but we didn’t have to explicitly discuss it. Also, we find that writing acceptance criteria for smaller scoped
stories makes it easier to write more specific acceptance criteria that are less ambiguous. In other words, our
story definitions are tighter.

We never did an A/B comparison in terms of productivity before and after the transition, but the team feels
more productive, and morale improved as we were able to see progress each day as we moved our stories
across the board. In addition, our communication with the Program Manager improved, as he had a better idea
of status and how long it would take to complete a feature.

Even after our product launch in February 2015, our business requirements are still changing on a regular
basis, so this JIT style planning is still a good match for our environment.

5. LESSONS LEARNED AND TAKE-AWAYS
There were several factors that made our transition fairly smooth.

5.1 Experienced Team Leadership

The person whose role had the biggest changes after our transition from scrum to kanban was the Program
Manager (acting as Scrum Master). Throughout the week he had to stay at least one step ahead of the team in
grooming the backlog. Given our fluctuating business needs, this was something he had to do on a daily basis. If
the “On Deck” column started looking low, he had to make sure that he had the acceptance criteria well enough
defined to add more stories to “On Deck” in case the stories in flight were finished before our next Standup.
This meant that instead of grooming our backlog on a weekly or bi-weekly basis, as we did during our 2-week
Sprint schedule, he had to constantly keep an eye on the backlog. He also had more stories to manage.

Another challenge as a Program Manager, is managing the transition itself. As a team, we had agreed to
new practices to support the new kanban paradigm, but he had to help us adhere to the new practices that we
adopted. This meant supporting the team as he guided the team to adopt the new practices, meeting
definitions, and story writing.

Since I had been practicing Agile for more than 10 years, the Program Manager and [worked together to
groom the backlog and coached the team to the new kanban world. We were also working with a team that
was very supportive of our efforts to introduce change. Which leads to the next point.

5.2 Mature Agile Organization

Another factor that made our transition smoother, was the depth of Agile experience the organization already
had. Most of the team was comprised of experienced Agile practitioners. The team was already conducting
retrospectives where we discuss how well, or not well our current processes are doing, and making
incremental process changes as required. To consider a fundamental paradigm shift did not feel as scary for us,
as it might have felt for an organization that wasn’t already practicing Agile. We already had the tools to adjust
if our first attempt at kanban didn’t work. Having weekly retrospectives allowed us to explicitly discuss how
things were going more frequently than our previous retrospectives that came at the end of each sprint.

5.3 Kanban Training

The year before our transition to kanban, the entire development organization had gone through a kanban
training that was offered by Modus Cooperandi. This training introduced us to the concepts of lean and kanban,
such as work in progress (WIP), cycle time, etc. When our team started discussing the adoption of kanban we
already had a common vocabulary. So, for example, when a team member said, what is our WIP for each
column, we already knew what a WIP was in theory.

5.4 Keeping a Weekly Cadence

We found that having a weekly cadence helped us structure our new kanban life. We had weekly
retrospectives, so we could make minor adjustments to our process if issues came up. We also found that
keeping a weekly planning cadence helped us feel more comfortable with the process. Book-ending the week
with planning on Mondays and retrospectives on Fridays, contributed to the feeling of a good regular tempo.
So, even though we eliminated sprints, maintaining a weekly schedule seemed to make sense. However, one
weekly cadence disappeared - that was our weekly release cadence that we maintained when we had scrum
sprints. Instead, we started releasing features as they were completed, which seems more in keeping with
kanban.

From Scrum to Kanban - A Team's Journey: Page - 5

5.5 Experienced Kanban Team In Close Proximity

We were very fortunate, that we were sitting next to another team that was successfully using kanban. For
example, they not only gave us the column name for our Jira board, but they also showed us how to handle
“blocked” and “expedite” stories by putting the stories in their own swim lanes. We also emulated their weekly
cadence and smaller scoped stories.

6. EPILOG

We are still happily doing kanban, nine months after our transition. In fact it is hard to imagine what it would
be like to go back to two-week sprints. As [was writing this report [asked on one of the developers if he was
still happy with the transition and he said, “Oh yes!” In talking to other developers on the team, they like the
smaller scoped stories, and the visibility the kanban board gives them -- both in terms of work flow and also
the forward looking visibility of the backlog.

Looking at some retrospective notes from the time we did the transition (late August - early September
2014) there were comments like, “Kanban going well - stories getting smaller and smaller” and, “Just-in-time
planning!”

There is something very satisfying with seeing work items move across a kanban board. I recently created
another kanban board to track the progress of a series of documentation we are creating for our new product.
The Tech Writer was thrilled to see her work appear on a board. The simple representation of her work in
progress gave her a sense of accomplishment in a way that was different than looking at a directory of files.

Our business needs still change frequently, but the team feels productive and likes steadily releasing new
features. All of our meetings feel more efficient and productive, as we maintain the spirit of JIT planning.

When I shared our kanban experience with our VP of Technology, he suggested that kanban was an
advanced form of Agile, and I agree with him. Though, Agile has many different definitions, keeping a daily
focus on the highest priority stories that supports business needs, makes us feel like we were embracing Agile
atanew level.

7. ACKNOWLEDGEMENTS

[would like to thank my co-workers at Marchex, who helped make the transition a success: Andrew Garbutt
(Sr S/W Developer), Anna Zeitlin (S/W Developer), Bo Li (Program Manager), Craig Ulbrecht (S/W
Development Manager), John Paul Wallway (S/W Developer), Jos Van Schagen (Principal S/W Developer), Kent
Henneuse (Sr S/W Developer), and Madeline Heffernan (S/W Intern). I also want to thank Rebecca Wirfs-Brock
for all the work she did to shepherd this report, from a session at Agile Open Northwest 2015, to this
Practitioners’ Report.

From Scrum to Kanban - A Team's Journey: Page - 6

