Using ATDD To Build Customers That Care

SAMUEL HOTOP, Thoughtworks, Inc.
LAV PATHAK, Thoughtworks, Inc.
JEFFREY DAVIDSON, Davisbase, LLC

In this experience report, we present our implementation of Acceptance Test Driven Development in a complex, data-driven domain. We
spent over a year as consultants in the Oil and Gas industry, engineering Natural Gas Pipeline management software that would manage
the movement of gas across a number of pipeline systems in North America. We used ATDD to better engage product owners in the
development process, build a ubiquitous language across a distributed team, promote faster feedback, and create an enjoyable team
culture in which engineers and product owners alike were deeply invested in the success of the product.

1. INTRODUCTION

Samuel Hotop has made a career of seeking out and eliminating weaknesses in software. He spends his
professional life on the road, embedded in delivery teams across a number of domains, collaborating with
engineers to bake quality into their ideas, processes, and software. Lav Pathak is a passionate software
developer with experience delivering high quality applications. Well versed in agile practices such as TDD, CI
and extreme programming, Lav believes in teams where every member directly contributes toward code
quality. Jeffrey Davidson is an acknowledged expert on the use of BDD by Business Analysts. He is at the
forefront of change with a career spanning more than 2 decades helping organizations hone their business
processes by improving their business analysis and product management practices.

2. CONTEXT

Our time on this project took place over the course of 18 months. We began in early 2012 and ended with our
transition to an in-house team late in 2013. This was a greenfield project staffed by ThoughtWorks consultants
and two primary client developers. We were tasked with building a natural gas pipeline management system
that would move gas across a series of seven pipes that stretched from Calgary, Alberta down to the Gulf of
Mexico. The domain was marked by its data complexity. We wrote complex equations and algorithms to
determine pipe capacities. We implemented shortest path algorithms to make the movement of gas between
two locations efficient. On certain pipes, there were thousands of gas shippers making requests to move gas in
overlapping cycles throughout the gas day. These shippers competed for spots on the pipe, which had finite
space, and in order to determine which shipper’s gas would be moved, we had to take into account the
shippers rank in relation to all other shippers who were requesting to move gas at that moment at that mile
marker. The rank had to be derived from various types of contracts the shipper had set up with the pipeline
owner. After a shipper’s gas was on the pipe, we had to account for fuel cost, based on distance traveled, and
had to facilitate the agreement between pipeline operators at upstream and downstream locations to confirm
quantities that would be sent and would be received. We were focused on building multiple pipes that
operated in this nature, each with their own unique business rules, and we had to allow for new pipes to be
added in the future. The domain was new to everyone but our clients, and as consultants, we were expected to
have working software up and running quickly.

Communication presented its own challenges. Our team was distributed between Recife, Brazil and
Houston, TX. There was a technical team in Brazil that we shared the codebase with, in addition to business
analysts and iteration managers that we interacted with daily. We took steps to mitigate the geographical
distance, setting up a 24/7 live video feed between the US and Brazil that could be used for on-the-fly
conversations, and we pair-programmed using a tool called TeamViewer. While the language / culture barrier
wasn’t really a problem, we faced real challenges up front disseminating information about the domain to our
teammates in Brazil. The product owners, through whom the entire team was expected to learn the domain,
were all housed full time in Houston. This was our first time working together as a team.

Author's address: Samuel Hotop, Chicago, IL; email: shotop@thoughtworks.com
Second author's address: Lav Pathak, San Francisco, CA; email: Ipathak@thoughtworks.com
Third author's address: Jeffrey Davidson, Carrollton, TX; email: jeffrey.davidson@davisbase.com

Copyright 2014 is held by the author(s).

3. FRESH IDEAS

While the domain was complex, and working in a distributed team presented its own unique challenges, we did
some key things early on that gave us a set of tools for success. One of the things we love to do with our clients
is to try to find ways to inject fresh ideas into our thinking about the domain. This can happen in a number of
ways. Many teams like brown-bag lunches, lunch and learns, etc. We think that it's good to try to break our
thinking out of the status quo from time to time in order to reveal new paths previously untraveled. On our
pipeline project, we decided to start a simple book club where we voted on books of interest, read a few
chapters a week, and then over lunch, had individuals present the material to the team. One of the books we
chose to study was Domain Driven Design by Eric Evans. Domain Driven Design [Evans] presented us with a
series of ideas around tackling complexity. In the midst of our own knowledge crunch, a concept Evans covers,
we needed a focused approach to defining our model and creating a model-based ubiquitous language that
would help everyone communicate the domain. We needed domain concepts not only to solidify in our minds
and in our speech, but to consistently permeate all layers of our code, from domain objects themselves, up
through our tests. Domain Driven Design goes into great depth on how to make this possible and was essential
reading for our team.

Another activity that injected a lot of new ideas into our thinking was a seminar the testers and analysts
attended called Specification By Example [Adzic]. This was a concept created by Gojko Adzic that suggests a
collaborative approach to creating tests, in which the team analyzes and generates executable specs that define
the behavior of a new feature before the feature goes into development. The developers are then tasked with
performing the same Red, Green, Refactor cycle they would for unit tests, but for higher-level acceptance tests.

The team also structured itself in a way that made sharing new ideas easy. Our approach to roles was
unique. In many ways, we jettisoned the standard expectations for dev, tester, and business analyst (BA). As is
the case with nearly all ThoughtWorks projects, we pair program. We think pairing creates an environment
where it is easy to share knowledge, build skills, and create a higher quality product. This project stands out in
that all engineers, despite their titles, paired. And that's how we’ve characterized our approach to roles: you
are an engineer first. Do what you can with the skills you have to help the team at the moment you see the
opportunity. As your skills grow over time, you should be capable of doing more to help. On the ground, this
simple directive meant that testers would routinely pair with BAs and product owners to drive out executable
specs and check them in before development. It meant that devs would routinely perform analysis on
upcoming stories, looking for bugs in our thinking, or pair with testers on new feature development, looking to
‘bake quality in’. It meant that BAs would pair with devs to debug test code, write queries, and do analysis of
the domain code itself. This cross-pollination of expertise throughout our 2-week iterations made us a stronger
team and helped us to create a better product. It also prepared our testers to write and maintain our non-
standard acceptance tests.

Each of our three testers came into the project with a good amount of test automation experience. This
experience, however, was limited to Selenium Webdriver type tests that would target elements on rendered
html. Outside of the automation skillset, the testers had a good mix of accessory skills that we think is worth
mentioning. One tester was especially proficient in blackbox testing and was able to achieve very deep domain
knowledge that drove out a lot of elusive bugs. The other two were more technical and could handle devops
tasks, like configuring new builds, as well as test framework maintenance. The mix of technical and analytical
testers on the team proved quite effective for us. Out of necessity, though, each tester would need to expand his
or her knowledge to include a deeper understanding of the Model View Controller pattern. In particular, they
needed to be able to build up requests that would be passed to controller actions and to be able to query the
responses for desired data. This request response paradigm would be the basis of all of our step definitions and
would become fundamental to the implementation of our acceptance tests. The building up of this particular
skillset occurred as a result of pairing with developers on a daily basis.

4. KNOWLEDGE CRUNCH

Eric Evans says, “Effective domain modelers are knowledge crunchers. They take a torrent of information and
probe for the relevant trickle.” We think this adequately describes what many of us face when beginning new
projects. There are often so many new domain terms and new people who speak about concepts in similar, but
often variable ways. With so much pressure on us to ramp up quickly and start hitting velocity numbers for our
first few iterations, we had to be active participants in the process of separating out all the little nuggets of
truth. We had to remain alert for inconsistencies and immediately question those who expressed concepts that

Using ATDD to Build Customers That Care: Page - 2

were contrary to the team's current understanding of our model. One of the major challenges arose from the
fact that we were building the system from the ground up, which meant that we had to spend the first few
months building out the most fundamental or basic concepts. The product owners we were working with had
never worked with Agile teams before and we had to work with them to provide us with information relevant
to the model as it existed at that moment, not as it would exist in a final product a year and a half down the
road.

One of the most fundamental pieces of pipeline management is the Nomination - which is basically an order
for gas. It took us three iterations of this term to finally whittle down a meaning, because it seemed to mean
different things to different people. From varied use of the word Nomination, we eventually derived three
different individual domain concepts: the nomination, the nomination transaction, and the nomination request.
When we arrived, our clients were expressing these terms interchangeably and it was the result of constant
questioning, of constant knowledge crunching, that we drove out the team's shared understanding and
eventually its language.

It took approximately three months to get from the inception of the project to the point where we
comfortable with our basic understanding of the gas day. Understanding the gas day was always an ah-ha
moment for newcomers to the team, because it meant that you knew how the gas cycles overlapped and how
cuts would be made at receipt and delivery locations based on the rankings of the shippers and how much gas
they were shipping. Midway through our fifth month, we had a working Capacity Model coded that could
determine cuts at any location on two of our seven pipes, the first of which was the most complex pipe. This
was a major victory for the team.

Of course, we couldn’t have consumed this knowledge and started modeling it with the speed that we did
without the help of some extraordinary product owners. They were passionate about their work in the energy
industry. They made themselves available any time we needed them. And they remained open to learning and
trying new things as part of our development processes. There were approximately 60+ years collective
experience in the natural gas industry shared between the product owners, but what we quickly realized is that
all that knowledge with regard to the inner workings of their existing pipeline systems was housed in code
form in a faulty legacy codebase that we didn't have access to and, more significantly, in their heads. No one
had ever really documented the processes necessary to move gas from point A to point B in a way that was
accessible and maintainable. There was no living documentation, not even in the form of test cases.

The legacy system itself was a web of fixes that included traps like the “death spiral.” It wasn't quite clear
how the death spiral was triggered, but it had been seen in the wild and many emergency levers and buttons
needed to be pulled and pressed to stop it, if it was detected in time. Effectively, it was an infinite loop that
would cut all nominations of gas on the pipe down to zero even though there was available capacity. We knew
it was bad. And we wanted to avoid it. We were also fortunate enough to have had some understanding of what
caused major failures in previous attempts at rebuilding the system. Rounding was one particular Achilles heel
for the team that was in place immediately prior to us. Due to a lack of more acute testing and traceability,
fractions of dekatherms of gas were not being rounded correctly, compounding over time and in such
quantities that the issue was reason enough for a complete write-off of the work that had been done. The
development team could not pinpoint the root-cause of the issue. These two pitfalls really illustrated the need
for a testing approach that drove the design of the system. We needed living documentation that flushed out
these pitfalls and that would allow us to explore new paths and scenarios.

5. EARLY STAGES

So, we started with what felt like puzzles. The team would sit around the projector with basic inputs and
domain concepts displayed on the white board and someone would moderate. "Ok if we nom 70,000
dekatherms from Fayetteville Express down to Moulton, and we run the capacity algorithm, based on the
operational capacities of our downstream locations, what do we expect to be cut at Shorewood?" These full
team exercises were important for a few reasons. First, they allowed us to find any inconsistencies in our
model and narrow down our language. They were a haven for knowledge crunching. With everyone in the
room together, product owners included, and Brazil on video, inconsistencies in language and meaning
bubbled up quite quickly. It was through these sessions that we refined the meaning of nomination that we
talked about earlier.

Early in the project, we were having these sessions daily, sometimes multiple sessions a day. They would
generally last from 30 minutes to an hour, or however long it took to solidify the team’s understanding of a
new concept or scenario. The product owners really seemed to get a kick out of this, which is the second

Using ATDD to Build Customers That Care: Page - 3

important point. These sessions helped to create those personal and professional relationships between the
technology team and the product owners that we believe were an essential part of our success. We were a team
of consultants brought in to work with a team of product owners that had never worked this closely with a
development team before and had never taken such an active role in building software before. As operators of
natural gas pipes, they were generally far removed from the software development lifecycle in their day-to-day
work. We think at the outset they were a bit standoffish due to all the new technical jargon being thrown
around. And we too were intimidated by the complexity of their work. These whiteboard sessions really gave
the product owners a chance to flex their professional intellectual muscles and to show us what they knew. It
got them engaged in our work and set the building blocks in place upon which we would implement our
version of ATDD.

The final significant benefit of these sessions was that they acted as an incognito introduction to BDD, to
acceptance tests, to Gherkin, and really to testing in general. We didn’t bring everyone into a room and start
showing slides about SpecFlow [SpecFlow]. We didn’t go though trainings on Gherkin syntax or step definitions
or table formatting. We didn’t talk about any of this up front. We simply started writing our scenarios on the
white board. Photo [A1] is from one of our sessions.

MERENCAPACITY TS ANAL/2ZED
THE™N —
e e09¢'~TPIE POMINATION shown BE | 1 s<ut
= o iR ‘ . :

A i . (ot Lo [T st
10,800 oY o - - & 6 1719 A

(] } ” e)

r~—
TR
N)

[A1]Team discussions around the whiteboard using Acceptance Tests (Photo by Sam Hotop)

You'll observe the Given, When, Then steps, the variable inputs, the table format for executing multiple
examples. The technology team was well aware that this would eventually turn into an executable acceptance
test, but the product team saw it simply as an intuitive way to run through our what-if pipeline scenarios and
to continue driving out our collective knowledge of the domain. This was important, because when the product
owners were originally asked to get involved in writing acceptance tests, they pushed back. They were still
under the impression that test writing was a purely technical task and that they didn’t have the time or
expertise to learn the tools necessary for doing so. It took some convincing on our part that this was something
that they could do and that we could provide them a way to really influence the team and define what would be
built through these tests.

Eventually, they agreed to pair on one of our more complex capacity tests and were surprised at how
similar the process was to our whiteboard sessions. We explained that all tests could be implemented this way
and that if they needed new steps to define new functionality, they simply needed to create the English
statement and we would implement the functionality. The lesson we learned here is that the introduction to a
new approach, new idea, even a new tool, doesn’t have to be formal and top-heavy. The team whiteboard
sessions provided a ton of value, including ramping product owners up on a tool they didn’t even know they’d
be using. And all that was needed was a whiteboard and a dry-erase marker.

Using ATDD to Build Customers That Care: Page - 4

In the end, those scenarios became executable tests running with every new change to the system. And this
was the moment that, looking back, we started really doing acceptance test DRIVEN development, roughly 3
months from the inception of the project. Now it wasn’t that we weren’t testing up until then. It really just took
this long for the dust to settle, to the point that we were comfortable with our base knowledge of the system
and that its early implementation was stable enough to start really building upon. It was also at this point that
we made a concerted effort to get the product owners involved up front, so that BAs and testers could check in
failing specs before the development process began.

The process moving forward from this point was fairly straightforward. The business would prioritize new
features to be built in each two-week iteration with input from the development team. The team would
perform analysis on these new stories, which included input from dev, test, and analysis roles, in conjunction
with product owners. Stories would be presented during our iteration planning meetings so that the entire
team could help knowledge crunch and drive out any inconsistencies. Once the analysis was driven out, a BA or
a tester would work with the product owner to drive out SpecFlow tests. SpecFlow, sometimes referred to as
“Cucumber for .Net,” is a BDD framework that seeks to bridge the communication gap between domain experts
and engineers by binding business readable tests to their underlying implementations.

Now for anyone who doesn’t run the build locally, creating new SpecFlow specs could seem impossible.
These tests live in the codebase. We needed our existing step definitions and existing tests to be accessible to
everyone who would be writing new ones, and this included product owners and BAs who weren’t running the
build on their machines. We got the level of accessibility we needed from a tool called Pickles [Pickles]. Pickles
is a .Net tool that can be used in conjunction with SpecFlow to create living documentation in a very accessible
html format. We added Pickles to our project and had it generate an artifact after each commit build in
TeamCity. We then simply showed the business analysts and product owners how to access that Team City
artifact. The artifact was a pretty, searchable html document that showed every running test for that particular
commit, so it was always up to date as long as you grabbed the latest one. Example [A2] shows some pickles
output that would typically be used to compose new tests.

PSV Bumping CounterFlow With Fuel

1 As a scheduler, | want 1o view detalls of the “Capacity Model” with the comect columns at a specific location so | can see

nominaton detalls as well as cuts detalls fo

Create RFSRevolution

PSV and Bumpable Quantities should be correct when there are Counter flow nominations

When | change cperational information
Locaton Effoctive Efective Operatonal Eval Constrant Nomable
Date Cyde Capacity Direcion |Location
FAYETTEVILLE 110172013 [Tiemely 1,375,000 Receipt Yos Recept
XPRE
W ON 113 W (] (Yos L}
EGAN (RECEIPT)IN 3 % 3,10(f N R

[A2] Standard Pickles output used for test coverage transparency

A business analyst or product owner could access the artifact and click through the navigation links on the left
to see what tests were running under each area of functionality. When composing new tests, they’'d simply
copy and paste combinations of existing steps or new English statements into an excel file, and sometimes even
into a formatted SpecFlow file. These would then either be checked into the codebase on the spot and ignored
until development began, or they’d be attached to the story cards to be checked in later. The ramp-up time
necessary to get everyone on the same page with this was short. We just gave them the path to the artifact in
the Continuous Integration server. Understanding what steps already existed and when to request new ones
wasn’t quite as simple and took more time.

At this point we were in approximately the 4th month of the project. We had built up a base set of steps to
describe the system’s most basic functionality, which the product owners didn’t have as much a hand in
creating. It took a little time for everyone to gain a clear understanding of what steps were already in existence.
However, moving into the 7th and 8th months of the project, as new features were built out, new steps would

Using ATDD to Build Customers That Care: Page - 5

be delivered as part of Analysis sessions between the BA and product owner. This is really what allowed the
product owners to drive out new functionality. Below is a timeline of the major events discussed thus far:

Inception => 3 months 3 months => 6 months 6 months => 1 year

eKnowledge Crunch eCapacity Model *Product Owners
*GasDay Basics Implementation Driving Functionality
eFundamental Model eTest Framework Through Tests
Implementation Creation eMore Complex
eDaily Whiteboard eTesters Writing System Fur)ctions
Sessions Initial In-Process [Confirmations,
Acceptance Tests Contracting]
eAdditional Pipes

\. J \. J

The product owners were energized in knowing that they had a clear role in creating new functionality and
that they had a contract by which they could hold us accountable in the form of these tests. When a new feature
would go up for approval, they would first look to see that the tests implemented up front were unignored and
passing. This approach also freed up testers to do more exploratory testing for less obvious bugs, because they
didn’t need to spend time writing test cases or doing regression on the fundamental requirements for each
feature. The documentation of each feature were the tests themselves and everyone had access to them.

6. IMPLEMENTATION DETAILS

We mentioned earlier that the time spent pairing between dev and tester was essential in that it prepared our
testers to be able to write and maintain our tests. The tests were not traditional functional tests. We consider
the traditional approach to be one that executes tests out of process against a running instance of the
application. Often these tests will instantiate a driver that will scrape rendered html for desired elements and
manipulate or query them in order to test assertions. Rendering was important to us, but we needed more
focus on testing our algorithms and data heavy modules. These were the crux of our application and that’s
where our product owners would be able to help us the most, given their inherent knowledge of the domain.
Also, it was clear up front that there would be many tests necessary to test all of the business logic and edge
cases for each of the seven pipes.

We didn’t want to fall into a situation where we had to have nightly test builds, builds that run over the
weekend, etc. So as a team, we decided to jettison that notion and expose our system components in process
while still applying a gherkin-based simple English layer on top. This way, the product owners would be
helping us write component and integration tests, while still validating that business rules were being met in a
way that was accessible. Implementing our tests in this way gave us an advantage. In process tests run on the
same thread and use the same transactions as the production code they’re executing, and they don’t require
the application to be deployed to run. On the other hand, out of process acceptance tests like Selenium
functional tests require the application to be deployed and run on a different thread. Out of process tests are
slower to execute and require more resources. And of course, reliability always seems to become an issue. Out
of process tests don’t have access to the thread the code is running on and have to wait for the responses as an
outside service. This typically introduces asynchronous behavior, often referred to as “timing issues”, which
can also affect the reliability of the tests. With regard to JavaScript and client side validations, it wasn'’t that our
app was totally lacking these things. We did have some “story flow” type Selenium tests that would execute this
JavaScript out of process. It was just that they weren’t our primary source of functional testing. Fortunately,
most of the algorithm and business logic code was server side, which made writing the tests in process an
easier strategic decision. The tabular format supported by SpecFlow worked perfectly for our math and data
heavy domain and it was a natural progression from the whiteboard sessions we had been having with the
product owners. [A3] is an example of one of the scenarios we implemented and [A4] is the implementation of
one of our step definitions.

Using ATDD to Build Customers That Care: Page - 6

Scenario: Cuts are applied prorata within the same rank on nominations of the same contract on SB
Given we are at Southern Border pipeline

And these contracts exist:

| K | Rt Sch | Start Date | End Date | Entity |

| 100 | T-1 | ©1/01/2000 | ©1/01/2030 | Manheim Energy Marketing |

And contract 100 has the following routes and is executed

| Start Date | End Date | Receipt Location | Delivery Location | Maximum Quantity |

| e1/01/2000 | ©1/01/2030 | Manning (Receipt)| Will County | seee000 |

Given these nominations have been created:

| Nom ID | Contract | Rec Loc | Del Loc | Rec Qty | Del Qty | Cycle | Up Rank | Down Rank|
| 1] 160 | Manning (Receipt) | Will County | 50,000 | 50,000 | Timely | 1 | 2 |

| 2] 160 | Manning (Receipt) | Will County | 250,000 | 250,000 | Timely | 2 | 1 |

| 3 | 160 | Manning (Receipt) | Will County | 50,000 | 50,000 | Timely | 2 | 1 |

When the Timely cycle nomination window closes

And the Timely cycle capacity model is approved

Then the capacity model details report for the Timely cycle at Manning (Receipt) has

| Nom ID | Contract | Nom Qty | Rt Sch | Priority | Rank | Constraint Cut Qty | Total Cut Qty |

1	100	50,000	T-1	Primary	2	50,000	50,000
2	100	250,000	T-1	Primary	1	85,000	85,000
3	100	50,000	T-1	Primary	1	17,000	17,000

[A3] Example SpecFlow Scenario

Using ATDD to Build Customers That Care: Page - 7

[Then(@"the capacity model details report for gas day (.*) for the (.*) at (.*) has")]
public void ThenTheCapacityModelDetailsReportHas(DateTime gasDay, CycleType cycleType,
ApplicationLocation location, Table table)

CheckAllNominationsWereCreatedCorrectly();

var schedulingController = ObjectFactory.GetInstance<SchedulingController>();
var response = schedulingController.Show(location.Id, gasDay, cycleType.Id);
var viewModel = (SchedulingShowViewModel)response.Model;

var detailRows = viewModel.NominationTransactions.ToList().Select(nominationTransaction =>
{

var detailRow = new CapactiyModelDetailRow();

var tableKey = nominationTransaction.NominationId.ToString();

try
{
tableKey = _entityContext.GetNomID(nominationTransaction.NominationId).ToString();
}
catch { }
detailRow.NomID = tableKey;
try
{
detailRow.ServiceRequesterContract =
_entityContext.GetContractContext(nominationTransaction.NominationContractId).ToString();
}
catch

detailRow.ServiceRequesterContract = nominationTransaction.NominationContractId.ToString();

}

detailRow.NomQty = nominationTransaction.NominatedQuantity.ToWholeNumberFormat();

detailRow.IncrementalNominatedQuantity =
nominationTransaction.IncrementalNominatedQuantity.ToWholeNumberFormat();

detailRow.RtSch = nominationTransaction.RateSchedule;

detailRow.Priority = nominationTransaction.Priority;

detailRow.Rate = nominationTransaction.RateDisplay;

detailRow.Rank = nominationTransaction.Rank;

detailRow.ConstraintCutQty = nominationTransaction.ConstraintCutQuantity.ToWholeNumberFormat();
detailRow.TotalCutQty = nominationTransaction.TotalCutQuantity.ToWholeNumberFormat();

detailRow.PreviouslyScheduled = nominationTransaction.PreviouslyScheduledVolume();

detailRow.RedirFlag = nominationTransaction.RedirectFlag ? "*" : H

return detailRow;

1)
table.CompareToSet(detailRows);

}

[A4] Example Step implementation

By looking closely at the code, you'll see that the step definition implementation isn’t making http calls using
page objects or manipulating html elements. Instead, it’s calling one of our end points directly by injecting an
instance of the Scheduling controller class. Also, it's not looking at the response from the server through
rendered html, but directly capturing the response from the endpoint and extracting the model out to compare
the results. To be able to achieve this, our production code classes needed to be injected into our test context.
We did this by setting up hooks before each feature was initialized. SpecFlow allows this by setting an attribute
on the method that you want to execute before each feature execution begins. [A5] provides an example of this.

Using ATDD to Build Customers That Care: Page - 8

[BeforeFeature]
public static void BeforeFeature()

{

Bootstrapper.Instance.Initialize();

ObjectFactory.EjectAllInstancesOf<IPipelineContext>();
ObjectFactory.Configure(x => x.For<IPipelineContext>().Use(new StubbedPipelineContext(() =>
Pipeline)));

[A5] BeforeFeature Attribute

Here Bootstrapper.Instance.lnitialize() is making a call to the bootstrapper class which is setting up all the
dependencies using structure map. The [BeforeFeature] attribute then executes the method before every
feature so that all of our dependencies are in place. With this setup, we have everything we need to run in
process.

Our tests ran faster in process, but the sheer number of them meant that we needed to make some
additional adjustments if we weren’t going to compromise on one of our prime directives as a team: to run all
of our tests on each change to the system. We needed to get feedback as soon as possible, which meant that we
had to keep our build times, especially local build times, reasonable. Some of the domain algorithms and
calculations under test were more expensive than others. So, to avoid running them every test, we created stub
objects that were injected into the tests if they were marked with specific tags. In one case, we had an object
whose responsibility was to calculate Fuel consumption during gas transportation. We didn’t need that
calculation to happen on tests other than the ones testing the fuel calculation functionality itself. So, we created
a stub fuel calculator class [A6], which was instantiated in the before hook.

// Removing costly pieces of code that are supposed to be exercised on specific tests
// and replacing with lighter ones
ObjectFactory.Container.EjectAllInstancesOf<FuelCalculatorFactory>();
ObjectFactory.Inject(typeof (FuelCalculatorFactory), new FuelCalculatorFactory());

[A6] Create a Stub Fuel Calculator Class

Once instantiated, these stubs could be injected simply by tagging a test with the defined tag. [A7] illustrates
this example. The method WithoutFuel will be executed before any feature or any scenario tagged with the
“withoutfuel” tag. These tags are used in the feature files as shown in figure [A8]. This will run all the scenarios
in the feature with an injected stub fuel calculator instead of using the real object.

[BeforeScenario("withoutfuel™)]
[BeforeFeature("withoutfuel")]
public static void WithoutFuel()

{

ObjectFactory.Container.EjectAllInstancesOf<FuelCalculatorFactory>();

var mock = new Mock<FuelCalculatorFactory>();
mock.Setup(x => x.GetInstance(It.IsAny<Pipeline>())).Returns(Mother.CreateZeroFuelRateCalculator());

ObjectFactory.Container.Inject(typeof(FuelCalculatorFactory), mock.Object);
}

[A7] Defining a Tag

@withoutfuel
Feature: Auto Confirm Based On Previous Cycle with two nominations

[A8] Designating a feature with a tag
The second adjustment we made was to avoid querying the same objects over and over again throughout the

execution of a test scenario. We achieved this by sharing data via context injection, a feature provided by
SpecFlow. In SpecFlow, step definitions are global, so the steps of a single scenario could be bound to step

Using ATDD to Build Customers That Care: Page - 9

definitions in multiple classes. It is common to share data between step definitions during the execution of a
scenario. For example, a Given step could prepare some data to insert or query some data to be used later, and
in a Then step you could use the same data to validate the transaction. [A9] is an example of this.

[Given(@"this revolution contract draft has been created")]
[When(@"this revolution contract draft is created")]
public void WhenThisRevolutionContractDraftHasBeenCreated(Table table)
{
_entityContext.FailureMessagesList.Clear();
var requestForServiceController = ObjectFactory.GetInstance<ContractCreateController>();
requestForServiceController.SetLoggedInUser(CurrentUser());
table.CreateSet<ContractRow>().ForEach(contractRow =>
{
var mapInvalidContractRowToViewModel = MapContractDraftHeaderRowToViewModel(contractRow,
Pipeline);
requestForServiceController.Validate(mapInvalidContractRowToViewModel);
var actionResult = requestForServiceController.Create(mapInvalidContractRowToViewModel);

if (requestForServiceController.ModelState.IsValid)

{
var redirectToRouteResult = actionResult as RedirectToRouteResult;
var contractNumber = (int) redirectToRouteResult.RouteValues["contractNumber"];
_entityContext.ContractRevolutionNumbers[contractRow.K] = contractNumber;

}

requestForServiceController.AddFailureMessagesTo(_entityContext);

s
}

[A9] Multiple Steps Sharing Data

Here we are creating the Contract object and storing the messages that have come back from the server in
_entityContext. Entity Context is a custom class that was created to store scenario context related data. This
class can be injected using the context injection provided by SpecFlow. Now we can use the messages in later
scenarios to validate the response from the server. This is shown in [A10].

Then(@"revolution contract is submitted successfully")]
public void ThenRevolutionContractDraftIsSavedSuccessfully()
{

_entityContext.FailureMessageslList.Should().BeEmpty("Expected no validation failures");

}

[A10] Validate Response

Finally, in order to speed up of our builds even further, we decided to parallelize our tests. We divided the tests
into four different groups and executed them in parallel. It was a bit of trial and error to divide them into
similar sized groups so that all the groups would execute in roughly the same amount of time. Since our CPUs
were multi core on both development and build machines, we were able to distribute and run them in parallel
locally and remotely. These adjustments did a lot to kept our local and CI build times down. At the time we
rolled off the project, our local build times, running all tests, were approximately 16 minutes. At this point we
had spent nearly 18 months in Houston and had written approximately 3000 tests across various layers of our
system: 1600 Unit tests, 1250 Acceptance tests, and 100 Functional Ul tests.

Not everything in our test approach was a success, however. The number of unit tests we had at one point
nearly equaled the number of acceptance tests we had. This was a smell and it revealed that we had become
too reliant upon our acceptance tests. It was true that business rules were being validated and our product
owners were happy with that. However, we realized we were neglecting our unit tests in favor of the
Acceptance tests. When it came time to do a major refactoring, our lax approach to unit testing hurt us. We
made the decision to refactor our contracting domain entities into a service. This was a substantial refactoring
and took more time than necessary because we didn’t have the unit level specifications in place to make the
architectural changes we needed to. This experience taught us a valuable lesson. We regrouped and refocused
our attention on our unit tests, primarily because we were unsure if new architectural changes would be

Using ATDD to Build Customers That Care: Page - 10

necessary in the future and we wanted to be ready for that. Acceptance tests, even those run in process, should
never replace unit tests, as they serve different functions. Teams should be cautious not to get too comfortable.

7. DEFECTS

Our defect process was similar to our new feature process in that it too was driven by tests. Tests, over time,
became the tool the team used to communicate. This was really a result of the growing complexity of the
system. To sit down and “explain” how some of our functionality worked became more and more difficult over
time because there were so many subcalculations that had to be performed to reach the result you were
looking for. It was too much to keep in your head. When new team members joined the project, we first pointed
them to the tests. They were the living documentation and explained, with examples, how the system worked.
Our best domain experts, the product owners, would often find the most elusive bugs. With all of their years of
experience, they had a better sense of where weaknesses in the system might occur. The process was simple. A
product owner might find a bug. They’d come to a business analyst or Tester to do the preliminary triage. At
that point, a failing test would be written and checked into the code base. This test would be ignored and the
defect card number would be added to the spec so that the developer who worked on it could easily find it. A
developer pair would typically pick up a bug within 24 hours. There was a lot of focus and attention put on
documenting and fixing bugs quickly because of experiences our client had with previous development teams
and seemingly small bugs, left unattended, that resulted in large failures.

8. WHAT WE LEARNED

The project is still ongoing. After 18 months on the ground, we transitioned the work over to in-house
developers and contractors, something we were happy about. It felt good to get something like this off the
ground and to leave our product owners in a position to carry on the work for themselves. Our experiences on
this team taught us a lot. Going out of our way to study together as a group was key in that it injected fresh
ideas into our thinking about the project. These ideas had an impact on how we built our software and how we
implemented our test strategy. We can’t stress enough how valuable it was to bring the product owners into
the development process. While they weren’t totally sold on the idea at the start, we think over time they really
saw the value that ATDD can bring. The notion that abstract ideas can become working software and that
business people can drive that creation through tests was a powerful one for them. Bringing them into the
team room for our whiteboard sessions, empowering them to create that contract between the business and
technology teams, and constantly focusing on driving out a model that was clear to everyone were key
ingredients in getting the project off the ground and stabilized. Our technical strategy of implementing our
tests in process also sped things up and gave us the fast feedback we needed to move quickly as a team. The
moment we transitioned off the project, the team was hitting its highest velocity numbers to date.

This was also a team where everyone went out of their comfort zones, product owners included. The work
we did to blend roles and break down traditional barriers between them really created a sense of cohesiveness
and trust. It made time on the team very challenging, but also extremely enjoyable and rewarding. The skills
we as developer, tester, and business analyst gained while working in this environment were valuable. In
addition to new technical expertise and valuable consulting experience, we have a new way of looking at tests
as a form of communication. We believe that the techniques we employed to create this collaborative
environment, based around acceptance tests, set the stage for our success in the face of many challenges. We
hope that you can take what we’ve learned and apply these techniques to your own projects and build upon
them.

9. ACKNOWLEDGEMENTS

We would like to thank our fellow teammates and product owners for making this an extraordinary experience
for us. They were a remarkable team of people to work with. And finally, many thanks to Rebecca Wirfs-Brock,
our shepherd, for all of her help and honest feedback in putting this experience to paper. We can’t thank you
enough for your guidance throughout this process.

REFERENCES

Adzic, Gojko, Specification By Example: How Successful Teams Deliver the Right Software, Manning Publications, 2011
Evans, Eric J., Domain Driven Design, Addison-Wesley, 2003
Pickles, Copyright © 2010-2012 Jeffrey Cameron, http://www.nuget.org/packages/Pickles/SpecFlow, http://www.specflow.org/

Using ATDD to Build Customers That Care: Page - 11

